
Flow- and Context-Sensitive Points-To Analysis
Using Generalized Points-To Graphs

Pritam M. Gharat1, Uday P. Khedker1(B), and Alan Mycroft2

1 Indian Institute of Technology Bombay, Mumbai, India
{pritamg,uday}@cse.iitb.ac.in

2 University of Cambridge, Cambridge, UK
am@cl.cam.ac.uk

Abstract. Bottom-up interprocedural methods of program analysis
construct summary flow functions for procedures to capture the effect
of their calls and have been used effectively for many analyses. However,
these methods seem computationally expensive for flow- and context-
sensitive points-to analysis (FCPA) which requires modelling unknown
locations accessed indirectly through pointers. Such accesses are com-
monly handled by using placeholders to explicate unknown locations or
by using multiple call-specific summary flow functions. We generalize the
concept of points-to relations by using the counts of indirection levels
leaving the unknown locations implicit. This allows us to create sum-
mary flow functions in the form of generalized points-to graphs (GPGs)
without the need of placeholders. By design, GPGs represent both mem-
ory (in terms of classical points-to facts) and memory transformers (in
terms of generalized points-to facts). We perform FCPA by progressively
reducing generalized points-to facts to classical points-to facts. GPGs
distinguish between may and must pointer updates thereby facilitating
strong updates within calling contexts.

The size of GPGs is linearly bounded by the number of variables and
is independent of the number of statements. Empirical measurements on
SPEC benchmarks show that GPGs are indeed compact in spite of large
procedure sizes. This allows us to scale FCPA to 158 kLoC using GPGs
(compared to 35 kLoC reported by liveness-based FCPA). Thus GPGs
hold a promise of efficiency and scalability for FCPA without compro-
mising precision.

1 Introduction

Points-to analysis discovers information about indirect accesses in a program and
its precision influences the precision and scalability of other program analyses
significantly. Computationally intensive analyses such as model checking are inef-
fective on programs containing pointers partly because of imprecision of pointer
analyses [1,8].

We focus on exhaustive (as against demand driven [2,7,22]) points-to analysis
with full flow- and context-sensitivity for precision. A top-down context sensitive

P.M. Gharat—Partially supported by a TCS Fellowship.
c© Springer-Verlag GmbH Germany 2016
X. Rival (Ed.): SAS 2016, LNCS 9837, pp. 212–236, 2016.
DOI: 10.1007/978-3-662-53413-7_11

Flow- and Context-Sensitive Points-To Analysis 213

analysis propagates the information from callers to callees [28] thereby analyzing
a procedure each time a new data flow value reaches its call(s). Some approaches
in this category are: call strings method [21], its value-based variants [10,17]
and the tabulation based functional method [18,21]. By contrast, bottom-up
approaches avoid analyzing callees multiple times by constructing summary flow
functions which are used at call sites to incorporate the effect of procedure
calls [3,6,13,19,21,23–28].

It is prudent to distinguish between three kinds of summaries (see [4] for
examples) that can be created for a procedure: (a) a bottom-up parameter-
ized summary flow function which is context independent, (b) a top-down enu-
meration of summary flow function in the form of input-output pairs for the
input values reaching a procedure, and (c) a bottom-up parameterless (and
hence context-insensitive) summary information. Context independence (in
(a) above), achieves context-sensitivity through parameterization and should
not be confused with context-insensitivity (in (c) above).

We focus on summaries of the first kind. Their construction requires com-
posing statement-level flow functions to represent a sequence of statements, and
merging the composed functions to represent multiple control flow paths reaching
a program point. These summaries should be compact and their size should be
independent of the number of statements. This seems hard because of the pres-
ence of indirect pointees. The composition of the flow functions for a sequence
of statements x = ∗y; z = ∗x cannot be reduced to a flow function of the basic
pointer assignments for 3-address code (x = &y, x = y, x = ∗y, and ∗x = y).

Our Key Idea and Approach. We generalize the concept of points-to rela-
tions by using the counts of indirection levels leaving the unknown locations
implicit. This allows us to create summary flow functions in the form of gen-
eralized points-to graphs (GPGs) whose size is linearly bounded by the number
of variables (Sect. 2). By design, GPGs can represent both memory (in terms
of classical points-to facts) and memory transformers (in terms of generalized
points-to facts).

Example 1. Consider procedure g of Fig. 1 whose GPG is shown in Fig. 2(c).
The edges in GPGs track indirection levels: indirection level 1 in the label (1,0)
indicates that the source is assigned the address (indicated by indirection level 0)
of the target. Edge a

1,0−−→ e is created for line 8. The indirection level 2 in edge
x

2,1−−→ z for line 10 indicates that the pointees of x are being defined; since z

is read, its indirection level is 1. The combined effect of lines 13 (edge y
1,0−−→ b)

and 17 (edge y
2,0−−→ d) results in the edge b

1,0−−→ d. However edge y
2,0−−→ d is also

retained because there is no information about the pointee of y along the other
path reaching line 17. ��

The generalized points-to facts are composed to create new generalized
points-to facts with smaller indirection levels (Sect. 3) whenever possible thereby
converting them progressively to classical points-to facts. This is performed in

214 P.M. Gharat et al.

Fig. 1. A program fragment used as a running example through the paper. All variables
are global.

two phases: construction of GPGs, and use of GPGs to compute points-to infor-
mation. GPGs are constructed flow-sensitively by processing pointer assignments
along the control flow of a procedure and collecting generalized points-to facts
(Sect. 4).

Function calls are handled context-sensitively by incorporating the effect of
the GPG of a callee into the GPG of the caller (Sect. 5). Loops and recursion are
handled using a fixed point computation. GPGs also distinguish between may
and must pointer updates thereby facilitating strong updates.

Section 6 shows how GPGs are used for computing classical points-to facts.
Section 7 presents the empirical measurements. Section 8 describes the related
work. Section 9 concludes the paper. A detailed technical report [4] describes
how we handle advanced issues (e.g. structures, heap memory, function pointers,
arrays, pointer arithmetic) and also provides soundness proofs.

The Advantages of GPGs Over Conventional Summaries. Indirect
accesses of unknown locations have been commonly modelled using placeholders
(called extended parameters in [25] and external variables in [13]).

The partial transfer function (PTF) based method [25] uses placeholders to
construct a collection of PTFs for a procedure for different aliasing patterns
involving formal parameters and global variables accessed in the procedure.

Example 2. For procedure g of the program in Fig. 1, three placeholders φ1, φ2,
and φ3 have been used in the PTFs shown in Figs. 2(a) and (b). The possibility
that x and y may or may not be aliased gives rise to two PTFs. ��

The number of PTFs could be combinatorial in the number of dereferences
of globals and parameters. PTFs that do not correspond to actual aliasing pat-
terns can be excluded by combining a top-down analysis for discovering aliasing
patterns with the bottom-up construction of PTFs [25,28]. Yet, the number of
PTFs could remain large.

An alternative approach makes no assumption about aliases in the calling
context and constructs a single summary flow function for a procedure. In a
degenerate case, it may require a separate placeholder for the same variable in
different statements and the size of the summary flow functions may be propor-
tional to the number of statements.

Flow- and Context-Sensitive Points-To Analysis 215

Fig. 2. PTFs/GPG for proc. g of Fig. 1. Edges deleted due to flow-sensitivity are struck
off.

s1: x = ∗y;
s2: ∗z = q;
s3: p = ∗y;

Example 3. For the code snippet on the right, we need two dif-
ferent placeholders for y in statements s1 and s3 because state-
ment s2 could change the pointee of y depending upon whether
∗z is aliased to y. ��

Separate placeholders for different occurrences of a variable can be avoided
if points-to information is not killed by the summary flow functions [13,23,24].
Another alternative is to use flow-insensitive summary flow functions [3]. How-
ever, both these cases introduces imprecision.

A fundamental problem with placeholders is that they explicate unknown loca-
tions by naming them, resulting in either a large number of placeholders (e.g., a
GPG edge · i,j−→· would require i + j − 1 placeholders) or multiple summary flow
functions for different aliasing patterns that exist in the calling contexts.

Since we use edges to track indirection levels leaving unknown locations
implicit: (a) placeholders are not needed (unlike [13,23–25,28]), (b) aliasing pat-
terns from calling contexts are not needed and a single summary per procedure is
created (unlike [25,28]), (c) the size of summary is linearly bounded by the num-
ber of variables regardless of the number of statements (unlike [13,23,24]), and
(d) updates can be performed in the calling contexts (unlike [3,13,23,24]). This
facilitates the scalability of fully flow- and context-sensitive exhaustive points-to
analysis.

2 Generalized Points-To Graphs (GPGs)

We define the basic concepts assuming scalars and pointers in the stack and static
memory; see [4] for extensions to handle structures, heap, function pointers, etc.

2.1 Memory and Memory Transformer

We assume a control flow graph representation containing 3-address code state-
ments. Program points t, u, v represent the points just before the execution
of statements. The successors and predecessors of a program point are denoted
by succ and pred ; succ∗ pred∗ denote their reflexive transitive closures. A control

216 P.M. Gharat et al.

flow path is a finite sequence of (possibly repeating) program points q0, q1, . . . , qm

such that qi+1 ∈ succ(qi).
Let L and P ⊆ L denote the sets of locations and pointers respectively. Every

location has a content and an address. The memory at a program point is a
relation M ⊆ P × (L ∪ {?}) where “?” denotes an undefined location. We view
M as a graph with L ∪ {?} as the set of nodes. An edge x → y in M indicates
that x ∈ P contains the address of location y ∈ L. The memory associated with
a program point u is denoted by Mu ; since u could appear in multiple control
flow paths and could also repeat in a control flow path, Mu denotes the memory
associated with all occurrences of u.

The pointees of a set of pointers X ⊆ P in M are computed by the application
M X = {y | (x, y) ∈ M,x ∈ X}. A composition of degree i, M i{x} discovers the
ith pointees of x which involves i transitive reads from x : first i − 1 addresses
are read followed by the content of the last address. For composability of M, we
extend its domain to L ∪ {?} by inclusion map. By definition, M0{x} = {x}.

For adjacent program points u and v , Mv is computed from Mu by incor-
porating the effect of the statement between u and v , Mv = (δ(u, v)) (Mu)
where δ(u, v) is a statement-level flow function representing a memory trans-
former. For v ∈ succ∗(u), the effect of the statements appearing in all con-
trol flow paths from u to v is computed by Mv = (Δ(u, v)) (Mu) where
the memory transformer Δ(u,v) is a summary flow function mapping the
memory at u to the memory at v . Definition 1 provides an equation to
compute Δ without specifying a representation for it. Since control flow

Definition 1: Memory Transformer Δ

Δ(u, v) := B(u, v) �
�

t ∈ succ∗(u)
v ∈ succ(t)

δ(t, v) ◦ Δ(u, t)

B(u, v) :=

⎧
⎪⎨

⎪⎩

Δid v = u
δ(u, v) v ∈ succ(u)
∅ otherwise

paths may contain cycles, Δ
is the maximum fixed point
of the equation where (a) the
composition of Δs is denoted
by ◦ such that (g ◦f) (·) =
g (f (·)), (b) Δs are merged
using �, (c) B captures the
base case, and (d) Δid is the
identity flow function. Hence-
forth, we use the term memory transformer for a summary flow function Δ. The
rest of the paper proposes GPG as a compact representation for Δ. Section 2.2
defines GPG and Sect. 2.3 defines its lattice.

2.2 Generalized Points-To Graphs for Representing Memory
Transformers

The classical memory transformers explicate the unknown locations using place-
holders. Effectively, they use a low level abstraction which is close to the memory
defined in terms of classical points-to facts: Given locations x, y ∈ L, a classical
points-to fact x−→y in memory M asserts that x holds the address of y. We pro-
pose a higher level abstraction of the memory without explicating the unknown
locations.

Flow- and Context-Sensitive Points-To Analysis 217

Fig. 3. GPG edges for basic pointer assignments in C.

Definition 2: Generalized Points-to Graph (GPG). Given locations x, y ∈ L, a
generalized points-to fact x

i,j−→ y in a given memory M asserts that every
location reached by i − 1 dereferences from x can hold the address of every
location reached by j dereferences from y. Thus, M i{x} ⊇ M j{y}. A general-
ized points-to graph (GPG) is a set of edges representing generalized points-to
facts. For a GPG edge x

i,j−→y, the pair (i, j) represents indirection levels and
is called the indlev of the edge (i is the indlev of x, and j is the indlev of y).

Figure 3 illustrates the generalized points-to facts corresponding to the basic
pointer assignments in C. Observe that a classical points-to fact x−→y is a special
case of the generalized points-to fact x

i,j−→y with i = 1 and j = 0; the case i = 0
does not arise.

The generalized points-to facts are more expressive than the classical points-
to facts because they can be composed to create new facts as shown by the exam-
ple below. Section 3 explains the process of composing the generalized points-to
facts through edge composition along with the conditions when the facts can and
ought to be composed.

s1: x = &y;
s2: z = x;

Example 4. Statements s1 and s2 to the right are represented
by GPG edges x

1,0−−→y and z
1,1−−→x respectively. We can compose

the two edges by creating a new edge z
1,0−−→ y indicating that z points-to y.

Effectively, this converts the generalized points-to fact for s2 into a classical
points-to fact. ��

Imposing an ordering on the set of GPG edges allows us to view it as a
sequence to represent a flow-sensitive memory transformer. A reverse post order
traversal over the control flow graph of a procedure dictates this sequence. It is
required only at the interprocedural level when the effect of a callee is incorpo-
rated in its caller. Since a sequence is totally ordered but control flow is partially
ordered, the GPG operations (Sect. 5) internally relax the total order to ensure
that the edges appearing on different control flow paths do not affect each other.

218 P.M. Gharat et al.

While the visual presentation of GPGs as graphs is intuitively appealing, it
loses the edge-ordering; we annotate edges with their ordering explicitly when it
matters.

A GPG is a uniform representation for a memory transformer as well as (an
abstraction of) memory. This is analogous to a matrix which can be seen both as
a transformer (for a linear translation) and also as an absolute value. A points-to
analysis using GPGs begins with generalized points-to facts · i,j−→· representing
memory transformers which are composed to create new generalized points-to
facts with smaller indlev s thereby progressively reducing them to classical points-
to facts · 1,0−−→· representing memory.

2.3 The Lattice of GPGs

Definition 3 describes the meet semi-lattice of GPGs. For reasons described later
in Sect. 5, we need to introduce an artificial � element denoted Δ� in the lattice.
It is used as the initial value in the data flow equations for computing GPGs
(Definition 5 which instantiates Definition 1 for GPGs).

Definition 3: Lattice of GPGs

Δ ∈ {Δ�} ∪ {(N , E) | N ⊆ N, E ⊆ E}
where

N := L ∪ {?}
E :=

{
x

i,j−→y | x ∈ P, y ∈ N,
0 < i ≤ |N |, 0 ≤ j ≤ |N | }

Δ1 � Δ2 ⇔ (Δ2=Δ�) ∨ (N1 ⊇ N2 ∧ E1 ⊇ E2)

Δ1 � Δ2 :=

⎧
⎪⎨

⎪⎩

Δ1 Δ2 = Δ�
Δ2 Δ1 = Δ�
(N1 ∪ N2, E1 ∪ E2) otherwise

The sequencing of edges
is maintained externally and
is explicated where required.
This allows us to treat a
GPG (other than Δ�) as a
pair of a set of nodes and
a set of edges. The partial
order is a point-wise super-
set relation applied to the
pairs. Similarly, the meet
operation is a point-wise
union of the pairs. It is easy
to see that the lattice is finite because the number of locations L is finite (being
restricted to static and stack slots). When we extend GPGs to handle heap mem-
ory [4], explicit summarization is required to ensure finiteness. The finiteness of
the lattice and the monotonicity of GPG operations guarantee the convergence
of GPG computations on a fixed point; starting from Δ�, we compute the max-
imum fixed point.

For convenience, we treat a GPG as a set of edges leaving the set of nodes
implicit; the GPG nodes can always be inferred from the GPG edges.

2.4 A Hierarchy of GPG Operations

Figure 4 lists the GPG operations based on the concept of the generalized points-
to facts. They are presented in two separate columns according to the two phases
of our analysis and each layer is defined in terms of the layers below it. The
operations are defined in the sections listed against them in Fig. 4.

Flow- and Context-Sensitive Points-To Analysis 219

Fig. 4. A hierarchy of operations for points-to analysis using GPGs. Each operation is
defined in terms of the layers below it. E denotes the set of GPG edges. By abuse of
notation, we use M and Δ also as types to indicate the signatures of the operations.
The operators “◦” and “� �” are overloaded and can be disambiguated using the types
of the operands.

Constructing GPGs. An edge composition e1 ◦ e2 computes a new edge e3
equivalent to e1 using the points-to information in e2 such that the indlev of
e3 is smaller than that of e1. An edge reduction e1◦Δ computes a set of edges
X by composing e1 with the edges in Δ. A GPG update Δ1 [X] incorporates
the effect of the set of edges X in Δ1 to compute a new GPG Δ2. A GPG
composition Δ1 ◦ Δ2 composes a callee’s GPG Δ2 with GPG Δ1 at a call
point to compute a new GPG Δ3.

Using GPGs for computing points-to information. An edge application
�e�M computes a new memory M ′ by incorporating the effect of the GPG
edge e in memory M. A GPG application �Δ�M applies the GPG Δ to M
and computes a new memory M ′ using edge application iteratively.

These operations allow us to build the theme of a GPG being a uniform repre-
sentation for both memory and memory transformers.

3 Edge Composition

This section defines edge composition as a fundamental operation which is
used in Sect. 4 for constructing GPGs. Some considerations in edge composition
(explained in this section) are governed by the goal of including the resulting
edges in a GPG Δ.

Let a statement-level flow function δ be represented by an edge n (“new”
edge) and consider an existing edge p ∈ Δ (“processed” edge). Edges n and p
can be composed (denoted n ◦ p) provided they have a common node called the
pivot of composition (since a pivot can be the source or target of either of the
edges, there are four possibilities as explained later). The goal is to reduce (i.e.,
simplify) n by using the points-to information from p. This is achieved by using

220 P.M. Gharat et al.

Fig. 5. Examples of edge compositions for points-to analysis.

the pivot as a bridge to join the remaining two nodes resulting in a reduced
edge r . This requires the indlev s of the pivot in both edges to be made the same.
For example, given edges n ≡ z

i,j−→x and p ≡ x
k,l−−→ y with a pivot x, if j > k,

then the difference j − k can be added to the indlev s of nodes in p, to view p
as x

j,(l+j−k)−−−−−−→ y. This balances the indlev s of x in the two edges allowing us to
create a reduced edge r ≡ z

i,(l+j−k)−−−−−−→ y. Although this computes the transitive
effect of edges, in general, it cannot be modelled using multiplication of matrices
representing graphs as explained in our technical report [4].

Example 5. In the first example in Fig. 5, the indlev s of pivot x in both p and n
is the same allowing us to join z and y through an edge z

1,0−−→ y. In the second
example, the difference (2−1) in the indlev s of x can be added to the indlev s of
nodes in p viewing it as x

2,1−−→y. This allows us to join y and z creating the edge
y

1,1−−→z. ��
Let an edge n be represented by the triple (Sn,(S c

n ,T c
n),Tn) where Sn and

Tn are the source and the target of n and (S c
n ,T c

n) is the indlev . Similarly, p is
represented by

(
Sp,

(
S c
p ,T c

p
)
,Tp

)
and the reduced edge r = n◦p by (Sr ,(S c

r ,T c
r),Tr);

(S c
r ,T c

r) is obtained by balancing the indlev of the pivot in p and n. The pivot of
a composition, denoted P, may be the source or the target of n and p. This leads
to four combinations of n ◦ p: SS, TS, ST , TT . Our implementation currently
uses TS and SS compositions illustrated in Fig. 6; ST and TT compositions are
described in the technical report [4].

– TS composition. In this case, Tn = Sp i.e., the pivot is the target of n and the
source of p. Node Sn becomes the source and Tp becomes the target of the
reduced edge r .

– SS composition. In this case, Sn = Sp i.e., the pivot is the source of both n
and p. Node Tp becomes the source and Tn becomes the target of the reduced
edge r .

Consider an edge composition r = n◦p, p ∈ Δ. For constructing a new Δ, we
wish to include r rather than n: Including both of them is sound but may lead to
imprecision; including only n is also sound but may lead to inefficiency because

Flow- and Context-Sensitive Points-To Analysis 221

Fig. 6. Illustrating all exhaustive possibilities of SS andTS compositions (the pivot is x).
Dashed edges are killed. Unmarked compositions are relevant and useful (Sect. 3); since
the statements are consecutive, they are also conclusive (Sect. 3) and hence desirable.

it forsakes summarization. An edge composition is desirable if and only if it is
relevant, useful , and conclusive. We define these properties below and explain
them in the rest of the section.

(a) A composition n ◦ p is relevant only if it preserves flow-sensitivity.
(b) A composition n ◦p is useful only if the indlev of the resulting edge does not

exceed the indlev of n.
(c) A composition n ◦ p is conclusive only when the information supplied by

p used for reducing n is not likely to be invalidated by the intervening
statements.

When the edge composition is desirable, we include r in the Δ being con-
structed, otherwise we include n. In order to explain the desirable compositions,
we use the following notation: Let �p denote a (P c

p)
th pointee of pivot P accessed

by p and �n denote a (P c
n)

th pointee of P accessed by n.

Relevant Edge Composition. An edge composition is relevant if it preserves
flow-sensitivity. This requires the indirection levels in n to be reduced by using
the points-to information in p (where p appears before n along a control flow
path) but not vice-versa. The presence of a points-to path in memory (which
is the transitive closure of the points-to edges) between �p and �n (denoted by
�p � �n or �n � �p) indicates that p can be used to resolve the indirection levels
in n.

222 P.M. Gharat et al.

Example 6. For S c
n < S c

p in Fig. 6 (Ex. ss1), edge p updates the pointee of x and
edge n redefines x. As shown in the memory graph, there is no path between �p
and �n and hence y and z are unrelated rendering this composition irrelevant.
Similarly, edge composition is irrelevant for S c

n = S c
p (Ex. ss3).

For S c
n > S c

p (Ex. ss2), �p � �n holds in the memory graph and hence this
composition is relevant. For Ex. ts1 , �n � �p holds; for ts2 , �p � �n holds; for
ts3 both paths hold. Hence, all three compositions are relevant. ��

Useful Edge Composition. The usefulness of edge composition characterizes
progress in conversion of the generalized points-to facts to the classical points-to
facts. This requires the indlev (S c

r , T c
r) of the reduced edge r to satisfy:

S c
r ≤ S c

n ∧ T c
r ≤ T c

n (1)

Intuitively, this ensures that the indlev of the new source and the new target does
not exceed the corresponding indlev in the original edge n.

Example 7. Consider Ex. ts1 of Fig. 6, for T c
n < S c

p , �n � �p holds in the memory
graph. Although this composition is relevant, it is not useful because the indlev
of r exceeds the indlev of n. For this example, a TS composition will create an
edge z

2,0−−→y whose indlev is higher than that of n (z 1,1−−→x). ��
Thus, we need �p � �n, and not �n � �p, to hold in the memory graph for a

useful edge composition. We can relate this with the usefulness criteria (Inequal-
ity 1). The presence of path �p � �n ensures that the indlev of edge r does not
exceed that of n. The usefulness criteria (Inequality 1) reduces to T c

p ≤ S c
p < S c

n
for SS composition and T c

p ≤ S c
p ≤ T c

n for TS composition.
From Fig. 6, we conclude that an edge composition is relevant and useful

only if there exists a path �p � �n rather than �n � �p. Intuitively, such a
path guarantees that the updates made by n do not invalidate the generalized
points-to fact represented by p. Hence, the two generalized points-to facts can
be composed by using the pivot as a bridge to create a new generalized points-to
fact represented by r .

Conclusive Edge Composition. Recall that r = n ◦ p is relevant and useful
if we expect a path �p � �n in the memory. This composition is conclusive when
location �p remains accessible from the pivot P in p when n is composed with
p. Location �p may become inaccessible from P because of a combined effect of
the statements in a calling context and the statements in the procedure being
processed. Hence, the composition is undesirable and may lead to unsoundness
if r is included in Δ instead of n.

Flow- and Context-Sensitive Points-To Analysis 223

Example 8. Line 6 in the code on the right
indirectly defines a (because of the assign-
ment on line 2) whereas line 7 directly
defines a overwriting the value. Thus, x
points to b and not c after line 8. When
the GPG for procedure q is constructed, the
relationship between y and a is not known.
Thus, the composition of n ≡ x

1,2−−→ y with
p ≡ y

2,0−−→ c results in r ≡ x
1,0−−→ c. Here

�p is c, however it is not reachable from y
anymore as the pointee of y is redefined by line 7. ��

Since the calling context is not available during GPG construction, we are
forced to retain edge n in the GPG, thereby missing an opportunity of reducing the
indlev of n. Hence we propose the following condition for conclusiveness: The state-
ments corresponding to p and n should be consecutive on every control flow (a) the
intervening statements should not have an indirect assignment (e.g., ∗x = . . .), and
(b) the pointee of pivot P in edge p should have been found i.e., P c

p = 1.

In the example above, condition (b) is violated and hence we add n ≡ x
1,2−−→y

to the GPG of procedure q instead of r ≡ x
1,0−−→c. This avoids a greedy reduction

of n when the available information is inconclusive.

4 Constructing GPGs at the Intraprocedural Level

In this section we define edge reduction, and GPG update; GPG composition is
described in Sect. 5 which shows how procedure calls are handled.

4.1 Edge Reduction n ◦ Δ

Definition 4: Edge reduction in Δ

n ◦ Δ := mlc ({n},Δ)
where

mlc (X,Δ) :=

{
X slces (X,Δ)=X

mlc (slces (X,Δ) ,Δ) Otherwise

slces (X,Δ) :=
⋃

e∈X

slc (e,Δ)

slc (n,Δ) :=

⎧
⎪⎨

⎪⎩

SS n
Δ �� TS n

Δ SS n
Δ �= ∅,TS n

Δ �= ∅
{n} SS n

Δ = TS n
Δ = ∅

SS n
Δ ∪ TS n

Δ Otherwise
SS n

Δ :=
{
n◦p | p ∈ Δ,Sn = Sp, T c

p ≤ S c
p < S c

n
}

TS n
Δ :=

{
n◦p | p ∈ Δ,Tn = Sp, T c

p ≤ S c
p ≤ T c

n
}

X �� Y :=
{ (

Sn,
(
S c
n ,T c

p
)
,Tp

) | n ∈ X,p ∈ Y
}

Edge reduction n ◦ Δ
uses the edges in Δ to
compute a set of edges
whose indlev s do not
exceed that of n (Def-
inition 4). The results
of SS and TS compo-
sitions are denoted by
SSnΔ and TSnΔ which
compute relevant and
useful edge composi-
tions; the inconclusive
edge compositions are
filtered out indepen-
dently. The edge order-
ing is not required at

224 P.M. Gharat et al.

the intraprocedural level; a reverse post order traversal over the control flow
graph suffices.

A single-level composition (slc) combines SSnΔ with TSnΔ. When both TS and
SS compositions are possible (first case in slc), the join operator �� combines their
effects by creating new edges by joining the sources from SSnΔ with the targets
from TSnΔ. If neither of TS and SS compositions is possible (second case in slc),
edge n is considered as the reduced edge. If only one of them is possible, its result
becomes the result of slc (third case). Since the reduced edges computed by slc
may compose with other edges in Δ, we extend slc to multi-level composition
(mlc) which recursively composes edges in X with edges in Δ through function
slces which extends slc to a set of edges.

Example 9. When n represents a statement x = ∗y, we need multi-level compo-
sitions: The first-level composition identifies pointees of y while the second-level
composition identifies the pointees of pointees of y. This is facilitated by func-
tion mlc. Consider the code snippet on the right. Δ = {y

1,0−−→ a, a
1,0−−→ b} for

n ≡ x
1,2−−→y (statement s3).

s1 : y = &a;
s2 : a = &b;
s3 : x = ∗y;

This involves two consecutive TS compositions. The first com-
position involves y

1,0−−→a as p resulting in TSnΔ = {x
1,1−−→a} and

SSnΔ = ∅. This satisfies the third case of slc . Then, slces is called
with X = {x

1,1−−→a}. The second TS composition between x
1,1−−→a (as a new n)

and a
1,0−−→ b (as p) results in a reduced edge x

1,0−−→ b. slces is called again with
X = {x

1,0−−→b} which returns X, satisfying the base condition of mlc. ��
Example 10. Single-level compositions are combined using �� when n represents
∗x = y.

s1 : x = &a;
s2 : y = &b;
s3 : ∗x = y;

For the code snippet on the right, SSnΔ returns {a
1,1−−→y} and

TSnΔ returns {x
2,0−−→b} when n is x

2,1−−→y (for statement s3). The
join operator �� combines the effect of TS and SS compositions
by combining the sources from SSnΔ and the targets from TSnΔ resulting in a
reduced edge r ≡ a

1,0−−→b. ��

4.2 Constructing GPGs Δ(u, v)

For simplicity, we consider Δ only as a collection of edges, leaving the nodes
implicit. Further, the edge ordering does not matter at the intraprocedural level
and hence we treat Δ as a set of edges. The construction of Δ assigns sequence
numbers in the order of inclusion of edges; these sequence numbers are main-
tained externally.

By default, the GPGs record the may information but a simple extension
in the form of boundary definitions (described in the later part of this section)
allows them to record the must information. This supports distinguishing between
strong and weak updates and yet allows a simple set union to combine the
information.

Flow- and Context-Sensitive Points-To Analysis 225

Fig. 7. Aggregate edge for handling strong and weak updates. For this example, s =
{a, b, c, . . .}.

Definition 5: Construction of Δ

Assumption : n is δ(t, v) and Δ is a set of edges
Δ(u, v) := B(u, v) ∪

⋃

t ∈ succ+(u)
v ∈ succ(t)

(Δ(u, t)) [n ◦ Δ(u, t)]

B(u, v) :=

{
n v ∈ succ(u)
∅ otherwise

where

Δ [X] := (Δ − conskill(X,Δ)) ∪ (X)

conskill(X,Δ) :=
{
e1 | e1 ∈match(e,Δ), e ∈ X, |def(X)|=1

}

match(e,Δ) := {e1 | e1 ∈ Δ, Se = Se1 , S c
e = S c

e1
}

def(X) :=
{
(Se, S

c
e) | e ∈ X

}

Definition 5
is an adaptation
of Definition 1
for GPGs. Since
Δ is viewed as a
set of edges, the
identity function
Δid is ∅, meet
operation is ∪,
and Δ(u, v) is
the least fixed
point of the equa-
tion in Defini-
tion 5. The com-
position of a statement-level flow function (n) with a summary flow function
(Δ(u, t)) is performed by GPG update which includes all edges computed by
edge reduction n◦Δ(u, t); the edges to be removed are under-approximated when
a strong update cannot be performed (described in the rest of the section). When
a strong update is performed, we exclude those edges of Δ whose source and indlev
match that of the shared source of the reduced edges (identified by match(e,Δ)).
For a weak update, conskill(X,Δ) = ∅ and X contains reduced edges. For an
inconclusive edge composition, conskill(X,Δ) = ∅ and X = {n}.

Extending Δ to Support Strong Updates. Conventionally, points-to infor-
mation is killed based on the following criteria: An assignment x = . . . removes
all points-to facts x −→ · whereas an assignment ∗x = . . . removes all points-to
facts y−→· where x must-points-to y; the latter represents a strong update. When
x may-points-to y, no points-to facts can be removed representing a weak update.

Observe that the use of points-to information for strong updates is inherently
captured by edge reduction. In particular, the use of edge reduction allows us
to model both of the above criteria for edge removal uniformly as follows: the
reduced edges should define the same pointer (or the same pointee of a given
pointer) along every control flow path reaching the statement represented by n.
This is captured by the requirement |def(X)| = 1.

When |def(X)| > 1, the reduced edges define multiple pointers (or different
pointees of the same pointer) leading to a weak update resulting in no removal of
edges from Δ. When |def(X)| = 1, all reduced edges define the same pointer (or
the same pointee of a given pointer). However, this is necessary but not sufficient

226 P.M. Gharat et al.

Fig. 8. Δ for procedures f and g of Figure 1.

for a strong update because the pointer may not be defined along all the paths—
there may be a path which does not contribute to def(X). We refer to such paths
as definition-free paths for that particular pointer (or some pointee of a pointer).
The possibility of such a path makes it difficult to distinguish between strong
and weak updates.

Since a pointer x or its transitive pointees may be defined along some control
flow path from u to v , we eliminate the possibility of definition-free paths from
u to v by introducing boundary definitions of the following two kinds at u: (a)
a pointer assignment x = x′ where x′ is a symbolic representation of the initial
value of x at u (called the upwards exposed version of x), and (b) a set of assign-
ments representing the relation between x′ and its transitive pointees. They are
represented by special GPG edges—the first, by a copy edge x

1,1−−→ x′ and the
others, by an aggregate edge x′ N,0−−→ s where N is the set of all possible indlev s
and s is the summary node representing all possible pointees. As illustrated in
Fig. 7, x′ N,0−−→s is a collection of GPG edges (Fig. 7(b)) representing the relation
between x with it transitive pointees at u (Fig. 7(a)).

A reduced edge x
1,j−−→ y along any path from u to v removes the copy edge

x
1,1−−→x′ indicating that x is redefined. A reduced edge x

i,j−→y, i>1 modifies the

aggregate edge x′ N,0−−→s to x′ (N−{i}),0−−−−−−→s indicating that (i−1)th pointees of x are
redefined.

The inclusion of aggregate and copy edges guarantees that |def(X)| = 1
only when the source is defined along every path. This leads to a necessary and
sufficient condition for strong updates. Note that the copy and aggregate edges
improve the precision of analysis and are not required for its soundness.

Flow- and Context-Sensitive Points-To Analysis 227

Example 11. Consider the construction of Δg as illustrated in Fig. 8(c). Edge g1

created for line 8 of the program, kills edge a
1,1−−→a′ because |def({g1})| = 1. For

line 10, since the pointees of x and z are not available in g, edge g2 is created from
x′ to z′; this involves composition of x

2,1−−→z with the edges x
1,1−−→x′ and z

1,1−−→z′.
Edges g3, g4, g5 and g6 correspond to lines 11, 13, 14, and 16 respectively.

The z
1,1−−→ z′ edge is killed along both paths (lines 11 and 14) and hence is

struck off in Δg, indicating z is must-defined. On the other hand, y
1,1−−→y′ is killed

only along one of the two paths and hence is retained by the control flow merge
just before line 16. Similarly x′ 2,0−−→s in the aggregate edge is retained indicating
that pointee of x is not defined along all paths. Edge g6 kills x

1,1−−→ x′. Line 17
creates edges g7 and g8; this is a weak update because y has multiple pointees
(|def({g7, g8})| �= 1). Hence b

1,1−−→ b′ is not removed. Similarly, y′ 2,0−−→ s in the
aggregate edge y′ N,0−−→s is not removed. ��

5 Constructing GPGs at the Interprocedural Level

Definition 6 shows the construction of GPGs at the interprocedural level by
handling procedure calls. Consider a procedure f containing a call to g between
two consecutive program points u and v . Let Startg and Endg denote the start
and the end points of g. Δ representing the control flow paths from Startf to u
(i.e., just before the call to g) is Δ(Startf ,u); we denote it by Δf for brevity. Δ
for the body of procedure g is Δ(Startg,Endg); we denote it by Δg.

Since GPGs are sequences of edges, Δg ◦ Δf involves selecting an edge e
in order from Δg and performing an update Δf [e ◦ Δf]. We then update the
resulting Δ with the next edge from Δg. This is repeated until all edges of Δg

are exhausted. The update of Δf with an edge e from Δg involves the following:
(a) substituting the callee’s upwards exposed variable x′ occurring in Δg by the
caller’s original variable x in Δf , (b) including the reduced edges e◦Δf , and (c)
performing a strong or weak update.

A copy edge x
1,1−−→ x′ ∈ Δ implies that x has not been defined along some

path. Similarly, an aggregate edge x′ N,0−−→ s ∈ Δ implies that some (i − 1)th

pointees of x, i > 1 have not been defined along some path. We use these to
define mustdef (x i,j−→y,Δ) which asserts that the (i−1)th pointees of x, i>1 are
defined along every control flow path. We combine it with def(x

i,j−→ y ◦ Δ) to
define callsup for identifying strong updates. Note that we need mustdef only at
the interprocedural level and not at the intraprocedural level. This is because,
when we use Δg to compute Δf , performing a strong update requires knowing
whether the source of an edge in Δg has been defined along every control flow
path in g. However, we do not have the control flow information of g when we
analyze f . When a strong update is performed, we delete all edges in Δf that
match e ◦ Δf . These edges are discovered by taking a union of match(e1,Δf),
∀e1 ∈ (e ◦ Δf).

228 P.M. Gharat et al.

Definition 6: Δ for a call g() in procedure f

/∗ let Δf denote Δ(Startf ,u) and Δg denote Δ(Startg,Endg) ∗/

Δ(Startf , v) := Δg ◦ Δf

Δg ◦ Δf := Δf [Δg]
where /∗ let Δg be {e1, e2, . . . ek} ∗/

Δf [Δg] := Δf [e1,Δg] [e2,Δg] . . . [ek,Δg]

Δf [e,Δg] := (Δf − callkill(e,Δf ,Δg)) ∪ (e ◦ Δf)

callkill(e,Δf ,Δg) :=
{
e2 | e2 ∈match(e1,Δf), e1∈e ◦ Δf , callsup(e,Δf ,Δg)

}

callsup(e,Δf ,Δg) := (|def(e ◦ Δf)| = 1) ∧ mustdef (e,Δg)

mustdef (x i,j−→y,Δ) ⇔ (
x

i,k−−→z ∈ Δ ⇒ k = j ∧ z = y
) ∧

((
i > 1 ∧ x′ i,0−−→s /∈ Δ

) ∨ (
i = 1 ∧ x

1,1−−→x′ /∈ Δ
))

The total order imposed by the sequence of GPG edges is interpreted as a
partial order as follows: Since the edges from Δg are added one by one, if the
edge to be added involves an upwards exposed variable x′, it should be composed
with an original edge in Δf rather than a reduced edge included in Δf created
by e1 ◦ Δf for some e1 ∈ Δg. Further, it is possible that an edge e2 may kill
an already added edge e1 that coexisted with it in Δg. However, this should be
prohibited because their coexistence in Δg indicates that they are may edges.
This is ensured by checking the presence of multiple edges with the same source
in Δg. For example, edge f7 of Fig. 8(d) does not kill f5 as they coexist in Δg.

Example 12. Consider the construction of Δf as illustrated in Fig. 8(d). Edges
f1 and f2 correspond to lines 2 and 3. The call on line 4 causes the composition
of Δf = {f1, f2} with Δg selecting edges in the order g1, g2, . . . , g8. The edges
from Δg with their corresponding names in Δf (denoted name-in-g/name-in-f)
are: g1/f3, g3/f5, g4/f6, g5/f7, g6/f8, g7/f9, and g8/f10. Edge f4 is created by
SS and TS compositions of g2 with f1 and f2. Although x has a single pointee
(along edge f1), the resulting update is a weak update because the source of g2 is
may-defined indicated by the presence of x′ 2,0−−→s in the aggregate edge x′ N,0−−→s.

Edges g3/f5 and g5/f7 together kill f2. Note that the inclusion of f7 does
not kill f5 because they both are from Δg. Finally, the edge for line 5 (x 2,1−−→z)
undergoes an SS composition (with f8) and TS compositions (with f5 and f7).
This creates edges f11 and f12. Since x

2,1−−→ z is accompanied by the aggregate
edge x′ N−{2},0−−−−−→ s indicating that the pointee of x is must-defined, and x has a
single pointee (edge f8), this is a strong update killing edge f10. Observe that all
edges in Δf represent classical points-to facts except f9. We need the pointees
of y from the callers of f to reduce f9. ��

For recursive calls, the Δ for a callee may not have been computed because
of a cycle in the call graph. This is handled in the usual manner [9,21] by over-
approximating initial Δ that computes � for may points-to analysis (which is ∅).
Such an initial GPG, denoted Δ� (Definition 3), kills all points-to relations and

Flow- and Context-Sensitive Points-To Analysis 229

generates none. Δ� is not expressible as a GPG and is not a natural � element
of the meet semi-lattice [9] of GPGs. The identity GPGΔid represents an empty
set of edges because it does not generate or kill points-to information. For more
details, please see [4].

6 Computing Points-To Information Using GPGs

Recall that the points-to information is represented by a memory M. We define
two operations to compute a new memory M ′ using a GPG or a GPG edge from
a given memory M.

• An edge application �e�M computes memory M ′ by incorporating the effect
of GPG edge e ≡ x

i,j−→ y in memory M. This involves inclusion of edges
described by the set

{
w

1,0−−→z | w ∈ M i−1{x}, z ∈ M j{y}
}

in M ′ and removal
of edges by distinguishing between a strong and a weak update. The edges to
be removed are characterized much along the lines of callkill .

• A GPG application �Δ�M applies the GPG Δ to M and computes the resulting
memory M ′ using edge application iteratively.

Let PTv denote the points-to information at program point v in proce-
dure f . Then, PTv can be computed by (a) computing boundary information
of f (denoted BIf) associated with Startf , and (b) computing the points-to infor-
mation at v from BIf by incorporating the effect of all paths from Startf to v .

BIf is computed as the union of the points-to information reaching f from
all of its call points. For the main function, BI is computed from static initial-
izations. In the presence of recursion, a fixed point computation is required for
computing BI .

If v is Startf , then PTv = BIf . For other program points, PTv can be computed
from BIf in the following ways; both of them compute identical PTv .

(a) Using statement-level flow function (Stmt-ff): Let stmt(u, v) denote the
statement between u and v . If it is a non-call statement, let its flow function
δ(u, v) be represented by the GPG edge n. Then PTv is computed as the
least fixed point of the following data flow equations.

Inu,v =

{
�Δ(Startq,Endq)�PTu stmt(u, v) = call q
�n�PTu otherwise

PTu =
⋃

u ∈ pred(v)

Inu,v

(b) Using GPGs: PTv is computed using GPG application �Δ(Startf , v)�BIf .
This approach of PTv computation is oblivious to intraprocedural control
flow and does not involve fixed point computation for loops.

230 P.M. Gharat et al.

Our measurements show that the Stmt-ff approach takes much less time than
using GPGs for PTv computation. This may appear surprising because the Stmt-
ff approach requires an additional fixed point computation for handling loops
which is not required in case of GPGs. However, using GPGs requires more time
because the GPG at v represents a cumulative effect of the statement-level flow
functions from Startf to v . Hence the GPGs tend to become larger with the
length of a control flow path. Thus computing PTv using GPGs for multiple
consecutive statements involves redundant computations.

Bypassing of BI . Our measurements show that using the entire BI of a proce-
dure may be expensive because many points-to pairs reaching a call may not be
accessed by the callee procedure. Thus the efficiency of analysis can be enhanced
significantly by filtering out the points-to information which is irrelevant to a
procedure but merely passes through it unchanged. This concept of bypassing
has been successfully used for data flow values of scalars [15,16]. GPGs support
this naturally for pointers with the help of upwards exposed versions of variables.
An upwards exposed version in a GPG indicates that there is a use of a variable
in the procedure which requires pointee information from the callers. Thus, the
points-to information of such a variable is relevant and should be a part of BI .
For variables that do not have their corresponding upwards exposed versions in
a GPG, their points-to information is irrelevant and can be discarded from the
BI of the procedure, effectively bypassing its calls.

7 Implementation and Measurements

We have implemented GPG based points-to analysis in GCC 4.7.2 using the LTO
framework and have carried out measurements on SPEC CPU2006 benchmarks
on a machine with 16GB RAM with 8 64-bit Intel i7-4770 CPUs running at
3.40GHz. Figure 9 provides the empirical data.

Our method eliminates local variables using the SSA form and GPGs are
computed only for global variables. Eventually, the points-to information for
local variables is computed from that of global variables and parameters. Our
implementation over-approximates an array by treating it as a single variable and
maintains its information flow-insensitively. Heap memory is approximated by
maintaining indirection lists of field dereferences of length 2 (see [4]). Unlike the
conventional approaches [25,27,28], our summary flow functions do not depend
on aliasing at the call points. The actually observed number of aliasing patterns
(column S in Fig. 9) suggests that it is undesirable to indiscriminately construct
multiple PTFs for a procedure.

Columns A, B, P , and Q present the details of the benchmarks. Column
C provides the time required for the first phase of our analysis i.e., computing
GPGs. The computation of points-to information at each program point has
four variants (using GPGs or Stmt-ff with or without bypassing). Their time
measurements are provided in columns D, E, F , and G. Our data indicates

Flow- and Context-Sensitive Points-To Analysis 231

P
ro
gr
am

kL
oC

#
of

T
im

e
fo
r
G
P
G
ba
se
d
ap
pr
oa
ch

(i
n
se
co
nd
s)

A
vg
.#

of
po
in
te
es

pe
r
po
in
te
r

A
vg
.#

of
po
in
te
es

po
in
te
r

G
P
G

co
m
pu
tin

g
po
in
ts
-t
o
in
fo

G
P
G

G
C
C

L
F
C
PA

pe
r
de
re
fe
re
nc
e

st
m
ts

C
on
st
r.

G
P
G

N
oB

yp
G
P
G

B
yp

St
m
t-
ff

N
oB

yp
St
m
t-
ff

B
yp

G
/N
oB

yp
(p
er

st
m
t)

G
/B
yp

(p
er

st
m
t)

L
+
A
rr

(p
er

pr
oc
)
G
+
L
+
A
rr

(p
er

pr
oc
)
G
+
L
+
A
rr

(p
er

st
m
t)

G
P
G

G
C
C

L
F
C
PA

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O

lb
m

0.
9

37
0

0.
10

0.
22

0.
21

0.
26

0.
28

1.
31

1.
42

2.
21

17
.7
4

0.
05

1.
09

2.
25

1.
50

m
cf

1.
6

48
0

75
.2
9

33
.7
3

30
.0
5

1.
25

0.
91

18
.7
3

6.
10

10
.4
8

34
.7
4

1.
22

4.
25

2.
57

0.
62

li
bq
ua
nt
um

2.
6

34
0

6.
47

10
.2
3

1.
95

8.
21

1.
85

13
9.
50

22
.5
0

1.
11

4.
49

3.
34

1.
50

2.
93

0.
83

bz
ip
2

5.
7

16
50

3.
17

11
.1
1

8.
71

4.
73

3.
30

43
.3
9

8.
38

1.
89

31
.4
6

0.
94

1.
72

2.
94

0.
33

m
il
c

9.
5

25
40

7.
36

6.
08

5.
89

4.
29

5.
61

21
.1
5

16
.3
2

4.
52

14
.0
6

31
.7
3

1.
18

2.
58

1.
61

sj
en
g

10
.5

70
0

9.
36

39
.6
6

25
.7
5

14
.7
5

7.
56

44
5.
22

64
.8
1

3.
07

2.
68

-
0.
98

2.
71

-
hm

m
er

20
.6

67
90

38
.2
3

51
.7
3

14
.8
6

31
.3
2

13
.5
0

43
.4
9

5.
85

6.
05

59
.3
5

1.
56

1.
04

3.
62

0.
91

h2
64
re
f

36
.1

17
77
0

20
8.
47

12
62
.0
7

19
9.
34

45
7.
26

74
.6
2

21
9.
71

9.
24

16
.2
9

98
.8
4

-
0.
98

3.
97

-
go
bm

k
15
8.
0
21
28
30

65
2.
78

36
52
.9
9
16
24
.4
6
15
82
.6
2
13
73
.8
8

11
.9
8

1.
73

6.
34

4.
08

-
0.
65

3.
71

-

Pr
og
ra
m

#
of

ca
ll

si
te
s

#
of

pr
oc
s.

P
ro
c.
co
un
tf
or

di
ff
er
en
tb

uc
ke
ts
of

#
of

ca
ll
s

#
of

pr
oc
s.
re
qu
ir
in
g
di
ff
er
en
t

no
.o

f
P
T
F
s
ba
se
d
on

th
e

no
.o

f
al
ia
si
ng

pa
tt
er
ns

#
of

pr
oc
s.
fo
r
di
ff
er
en
t

si
ze
s
of

G
P
G
in

te
rm

s
of

th
e
nu
m
be
r
of

ed
ge
s

#
of

pr
oc
s.
fo
r

di
ff
er
en
t%

of
co
nt
ex
t

in
d.
in
fo
.

#
of

in
co
nc
lu
si
ve

co
m
po
si
tio

ns
(r
eu
se

of
G
P
G
s)

A
ct
ua
lly

ob
se
rv
ed

Pr
ed
ic
te
d

(f
or

no
n-
em

pt
y
G
PG

s)
2-
5
5-
10

10
-2
0
20
+

2-
5
6-
10

11
-1
5
15
+

2-
5

15
+

0
1-
2
3-
4

5-
8
9-
50

50
+
<
2
0
20
-4
0
40
-6
0
60
+

P
Q

R
S

T
U

V
W

lb
m

30
19

5
0

0
0

8
0

0
0

13
0

13
4

2
0

0
0

3
0

0
3

0
m
cf

29
23

11
0

0
0

0
0

0
0

4
0

10
5

2
3

2
1

5
1

1
6

1
li
bq
ua
nt
um

27
7

80
24

11
4

3
7

3
1

0
14

4
42

10
7

12
9

0
20

12
1

5
0

bz
ip
2

28
8

89
35

7
2

1
22

0
0

0
28

2
62

13
4

5
5

0
26

0
0

1
1

m
il
c

78
2

19
0

60
15

9
1

37
8

0
1

35
25

15
7

11
19

2
7

0
6

10
9

14
3

sj
en
g

72
6

13
3

46
20

5
6

14
3

1
3

10
14

99
20

6
3

5
0

3
4

10
17

0
hm

m
er

13
28

27
5

93
33

22
11

62
5

3
4

88
32

16
7

56
20

15
15

2
54

20
11

23
4

h2
64
re
f

23
93

56
6
17
1

60
22

16
85

17
5

3
10
2

46
41
9

76
23

15
30

3
54

13
27

53
8

go
bm

k
93
79

26
97

31
7

11
0

99
13
4
20
6

30
9

10
21
0

12
1
13
74

93
8
10
83

97
42

41
11
92

39
51

0

F
ig
.9

.T
im

e,
pr

ec
is

io
n,

si
ze

,a
nd

eff
ec

ti
ve

ne
ss

m
ea

su
re

m
en

ts
fo

r
G

P
G

B
as

ed
P
oi

nt
s-

to
A

na
ly

si
s.

B
yp

(B
yp

as
si

ng
),

N
oB

yp
(N

o
B

yp
as

si
ng

),
St

m
t-
ff

(S
ta

te
m

en
t-

le
ve

lfl
ow

fu
nc

ti
on

s)
,G

(G
lo

ba
lp

oi
nt

er
s)

,L
(L

oc
al

po
in

te
rs

),
A

rr
(A

rr
ay

po
in

te
rs

).

232 P.M. Gharat et al.

that the most efficient method for computing points-to information is to use
statement-level flow functions and bypassing (column G).

Our analysis computes points-to information flow-sensitively for globals. The
following points-to information is stored flow-insensitively: locals (because they
are in the SSA form) and arrays (because their updates are conservative). Hence,
we have separate columns for globals (columns H and I) and locals+arrays (col-
umn J) for GPGs. GCC-PTA computes points-to information flow-insensitively
(column K) whereas LFCPA computes it flow-sensitively (column L).

The second table provides measurements about the effectiveness of summary
flow functions in terms of (a) compactness of GPGs, (b) percentage of context
independent information, and (c) reusability. Column U shows that GPGs are
empty for a large number of procedures. Besides, in six out of nine benchmarks,
most procedures with non-empty GPGs have a significantly high percentage of
context independent information (column V). Thus a top-down approach may
involve redundant computations on multiple visits to a procedure whereas a
bottom-up approach may not need much work for incorporating the effect of a
callee’s GPG into that of its callers. Further, many procedures are called multiple
times indicating a high reuse of GPGs (column R).

The effectiveness of bypassing is evident from the time measurements
(columns E and G) as well as a reduction in the average number of points-to
pairs (column I).

We have compared our analysis with GCC-PTA and LFCPA [11]. The num-
ber of points-to pairs per function for GCC-PTA (column K) is large because it
is partially flow-sensitive (because of the SSA form) and context-insensitive. The
number of points-to pairs per statements is much smaller for LFCPA (column
L) because it is liveness-based. However LFCPA which in our opinion repre-
sents the state of the art in fully flow- and context-sensitive exhaustive points-to
analysis, does not seem to scale beyond 35 kLoC. We have computed the average
number of pointees of dereferenced variables which is maximum for GCC-PTA
(column N) and minimum for LFCPA (column O) because it is liveness driven.
The points-to information computed by these methods is incomparable because
they employ radically dissimilar features of points-to information such as flow-
and context-sensitivity, liveness, and bypassing.

8 Related Work

Section 1 introduced two broad categories of constructing summary flow func-
tions for pointer analysis. Some methods using placeholders require aliasing infor-
mation in the calling contexts and construct multiple summary flow functions
per procedure [25,28]. Other methods do not make any assumptions about the
calling contexts [12,13,20,23,24] but they construct larger summary flow func-
tions causing inefficiency in fixed point computation at the intraprocedural level
thereby prohibiting flow-sensitivity for scalability. Also, these methods cannot
perform strong updates thereby losing precision.

Among the general frameworks for constructing procedure summaries, the
formalism proposed by Sharir and Pnueli [21] is limited to finite lattices of data

Flow- and Context-Sensitive Points-To Analysis 233

flow values. It was implemented using graph reachability in [14,18,19]. A general
technique for constructing procedure summaries [5] has been applied to unary
uninterpreted functions and linear arithmetic. However, the program model does
not include pointers.

Symbolic procedure summaries [25,27] involve computing preconditions and
corresponding postconditions (in terms of aliases). A calling context is matched
against a precondition and the corresponding postcondition gives the result.
However, the number of calling contexts in a program could be unbounded
hence constructing summaries for all calling contexts could lose scalability. This
method requires statement-level transformers to be closed under composition; a
requirement which is not satisfied by pointer analysis (as mentioned in Sect. 1).
We overcome this problem using generalized points-to facts. Saturn [6] also
creates summaries that are sound but may not be precise across applications
because they depend on context information.

Some approaches use customized summaries and combine the top-down and
bottom-up analyses to construct summaries for only those calling contexts that
occur in a given program [28]. This choice is controlled by the number of times a
procedure is called. If this number exceeds a fixed threshold, a summary is con-
structed using the information of the calling contexts that have been recorded for
that procedure. A new calling context may lead to generating a new precondition
and hence a new summary.

9 Conclusions and Future Work

Constructing bounded summary flow functions for flow and context-sensitive
points-to analysis seems hard because it requires modelling unknown locations
accessed indirectly through pointers—a callee procedure’s summary flow func-
tion is created without looking at the statements in the caller procedures. Con-
ventionally, they have been modelled using placeholders. However, a fundamental
problem with the placeholders is that they explicate the unknown locations by
naming them. This results in either (a) a large number of placeholders, or (b)
multiple summary flow functions for different aliasing patterns in the calling
contexts. We propose the concept of generalized points-to graph (GPG) whose
edges track indirection levels and represent generalized points-to facts. A sim-
ple arithmetic on indirection levels allows composing generalized points-to facts
to create new generalized points-to facts with smaller indirection levels; this
reduces them progressively to classical points-to facts. Since unknown locations
are left implicit, no information about aliasing patterns in the calling contexts
is required allowing us to construct a single GPG per procedure. GPGs are
linearly bounded by the number of variables, are flow-sensitive, and are able
to perform strong updates within calling contexts. Further, GPGs inherently
support bypassing of irrelevant points-to information thereby aiding scalability
significantly.

Our measurements on SPEC benchmarks show that GPGs are small enough
to scale fully flow and context-sensitive exhaustive points-to analysis to pro-
grams as large as 158 kLoC (as compared to 35 kLoC of LFCPA [11]). We

234 P.M. Gharat et al.

expect to scale the method to still larger programs by (a) using memoisation, and
(b) constructing and applying GPGs incrementally thereby eliminating redun-
dancies within fixed point computations.

Observe that a GPG edge x
i,j−→y in M also asserts an alias relation between

M i{x} and M j{y} and hence GPGs generalize both points-to and alias relations.
The concept of GPG provides a useful abstraction of memory involving point-

ers. The way matrices represent values as well as transformations, GPGs rep-
resent memory as well as memory transformers defined in terms of loading,
storing, and copying memory addresses. Any analysis that is influenced by these
operations may be able to use GPGs by combining them with the original
abstractions of the analysis. We plan to explore this direction in the future.

Acknowledgments. We are grateful to anonymous reviewers for incisive comments
which helped in improving the paper significantly. The paper has benefited from the
feedback of many people; in particular, Supratik Chakraborty and Sriram Srinivasan
gave excellent suggestions for improving the accessibility of the paper. Our ideas have
also benefited from discussions with Amitabha Sanyal, Supratim Biswas, and Venkatesh
Chopella. The seeds of GPGs were explored in a very different form in the Master’s
thesis of Shubhangi Agrawal in 2010.

References

1. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

2. Dillig, I., Dillig, T., Aiken, A.: Sound, complete and scalable path-sensitive analysis.
In: Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2008. ACM, New York (2008)

3. Feng, Y., Wang, X., Dillig, I., Dillig, T.: Bottom-up context-sensitive pointer analy-
sis for Java. In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 465–
484. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26529-2_25

4. Gharat, P.M., Khedker, U.P.: Flow and context sensitive points-to analysis using
generalized points-to graphs. CoRR (2016). arXiv:1603.09597

5. Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural
analysis. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267.
Springer, Heidelberg (2007)

6. Hackett, B., Aiken, A.: How is aliasing used in systems software? In: Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT 2006/FSE-14. ACM, New York (2006)

7. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language Design and Imple-
mentation, PLDI 2001. ACM, New York (2001)

8. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

9. Khedker, U.P., Sanyal, A., Sathe, B.: Data Flow Analysis: Theory and Practice.
Taylor & Francis (CRC Press, Inc.), Boca Raton (2009)

http://dx.doi.org/10.1007/978-3-319-26529-2_25
http://arxiv.org/abs/1603.09597

Flow- and Context-Sensitive Points-To Analysis 235

10. Khedker, U.P., Karkare, B.: Efficiency, precision, simplicity, and generality in inter-
procedural data flow analysis: Resurrecting the classical call strings method. In:
Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 213–228. Springer, Heidelberg
(2008)

11. Khedker, U.P., Mycroft, A., Rawat, P.S.: Liveness-based pointer analysis. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 265–282. Springer,
Heidelberg (2012)

12. Li, L., Cifuentes, C., Keynes, N.: Precise and scalable context-sensitive pointer
analysis via value flow graph. In: Proceedings of the 2013 International Symposium
on Memory Management, ISMM 2013. ACM, New York (2013)

13. Madhavan, R., Ramalingam, G., Vaswani, K.: Modular heap analysis for higher-
order programs. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp.
370–387. Springer, Heidelberg (2012)

14. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algo-
rithm. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 124–144. Springer,
Heidelberg (2010)

15. Hakjoo, O., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of
sparse global analyses for C-like languages. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2012, Beijing, China,
11–16 June 2012

16. Hakjoo, O., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided
by impact pre-analysis. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, Edinburgh, UK, 09–11 June 2014

17. Padhye, R., Khedker, U.P.: Interprocedural data flow analysis in SOOT using value
contexts. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on
State Of the Art in Java Program Analysis, SOAP 2013. ACM, New York (2013)

18. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1995. ACM, New York
(1995)

19. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. In: Selected Papers from the 6th Interna-
tional Joint Conference on Theory and Practice of Software Development, TAP-
SOFT 1995. Elsevier Science Publishers B. V., Amsterdam (1996)

20. Shang, L., Xie, X., Xue, J.: On-demand dynamic summary-based points-to analy-
sis. In: Proceedings of the Tenth International Symposium on Code Generation
and Optimization, CGO 2012. ACM, New York (2012)

21. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnick, S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applica-
tions, Chap. 7 (1981)

22. Sridharan, M., Gopan, D., Shan, L., Bodík, R.: Demand-driven points-to analy-
sis for Java. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
2005. ACM, New York (2005)

23. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

24. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA 1999. ACM, New
York (1999)

236 P.M. Gharat et al.

25. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C pro-
grams. In: Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 1995 (1995)

26. Yan, D., Guoqing, X., Rountev, A.: Rethinking SOOT for summary-based whole-
program analysis. In: Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis, SOAP 2012. ACM, New York (2012)

27. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008. ACM, New York (2008)

28. Zhang, X., Mangal, R., Naik, M., Yang, H.: Hybrid top-down and bottom-up inter-
procedural analysis. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2014. ACM, New York
(2014)

	Flow- and Context-Sensitive Points-To Analysis Using Generalized Points-To Graphs
	1 Introduction
	2 Generalized Points-To Graphs (GPGs)
	2.1 Memory and Memory Transformer
	2.2 Generalized Points-To Graphs for Representing Memory Transformers
	2.3 The Lattice of GPGs
	2.4 A Hierarchy of GPG Operations

	3 Edge Composition
	4 Constructing GPGs at the Intraprocedural Level
	4.1 Edge Reduction n
	4.2 Constructing GPGs (u,v)

	5 Constructing GPGs at the Interprocedural Level
	6 Computing Points-To Information Using GPGs
	7 Implementation and Measurements
	8 Related Work
	9 Conclusions and Future Work
	References

