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A resource leak occurs when a program fails to free some finite resource after it is no longer needed. Such leaks

are a significant cause of real-world crashes and performance problems. Recent work proposed an approach

to prevent resource leaks based on checking resource management specifications. A resource management

specification expresses how the program allocates resources, passes them around, and releases them; it also

tracks the ownership relationship between objects and resources, and aliasing relationships between objects.

While this specify-and-verify approach has several advantages compared to prior techniques, the need to

manually write annotations presents a significant barrier to its practical adoption.

This paper presents a novel technique to automatically infer a resource management specification for a

program, broadening the applicability of specify-and-check verification for resource leaks. Inference in this

domain is challenging because resource management specifications differ significantly in nature from the

types that most inference techniques target. Further, for practical effectiveness, we desire a technique that can

infer the resource management specification intended by the developer, even in cases when the code does

not fully adhere to that specification. We address these challenges through a set of inference rules carefully

designed to capture real-world coding patterns, yielding an effective fixed-point-based inference algorithm.

We have implemented our inference algorithm in two different systems, targeting programs written in Java

and C#. In an experimental evaluation, our technique inferred 85.5% of the annotations that programmers had

written manually for the benchmarks. Further, the verifier issued nearly the same rate of false alarms with the

manually-written and automatically-inferred annotations.
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1 INTRODUCTION

A resource leak occurs when a finite resource managed by the programmer is not released after
it is no longer needed, causing the resource to be held indefinitely by the program. For example,
resources such as file descriptors, sockets, and database connections must be explicitly released by
the programmer. Resource leaks can lead to the depletion of system resources and poor performance,
eventually causing the program or the whole system to crash.

Recent work proposed a specify-and-verify approach to find and prevent resource leaks [Kellogg
et al. 2021]. This work first requires the programmer to write a resource management specification of
how the program intends to manage its resources. The specification language includes annotations
that indicate which objects control a resource, and lightweight ownership and aliasing properties
that track the flow of resources through the program. Given an annotated program, a verification
tool then verifies the correctness of the annotations and concludes the absence of leaks given
the annotations. The annotations further allow the checker to be fast through modularity and
incrementality: it only needs to analyze one method at a time, and after a code change, it only
needs to analyze modified methods.
However, there is a substantial barrier to practical adoption of this approach: the program-

mer must write the resource management specification. Understanding and specifying resource
management protocols can be very challenging, especially for large legacy systems.

This paper presents a novel inference technique to automatically discover a resource management
specification that can then be used for verification. Automated inference significantly reduces user
effort and broadens the applicability of this style of verification.

Inference of resource management specifications poses multiple challenges. These specifications
differ from the types or type qualifier properties [Foster et al. 1999] that most existing inference
techniques have focused on in the past. Resource management specifications must capture multiple
inter-related properties, including resource ownership, which methods release resources, and
aliasing relationships. Effective inference of these properties requires a customized algorithm that
infers these facts simultaneously. Furthermore, it is desirable to infer the intended specification
because a program may be buggy, such as releasing a resource along some control-flow paths but
not all. The need for optimistic inference (inferring specifications that cannot be verified) is atypical
for inference techniques.

Our algorithm performs inference based on how the program creates, passes around, and releases
resources. The inference is bootstrapped from tool-provided annotations for resource types in the
standard libraries (the JDK and the .NET framework) and optional programmer-written annotations.
Our algorithm has two phases.

The first phase determines the owned resources for each class by identifying fields whose declared
type might need to be released. It also identifies a “disposal method”1 of a class that releases the
owned resources. A method is optimistically inferred to be a disposal method if it releases a resource
on some (but not necessarily all) paths, thereby capturing what is typically the intended protocol.
With this optimistic technique, the checker will still report an error after inference is completed,
but the error is localized to where the likely-intended specification is violated, and hence where
the actual code fix is likely to be needed.
The second phase infers all other parts of a resource management specification. This includes

optimistic inference of method signatures (ownership of method parameters and returns) and
inference of resource alias relationships. When closing any of multiple objects in the program is
adequate to release an underlying resource, we refer to those objects as resource aliases.

1This disposal method is often named close (in Java) or Dispose (in C#).
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This paper formalizes the inference algorithm as a set of inference rules, such that annotations are
inferred by applying the rules to a fixed point. To demonstrate the generality and effectiveness of our
approach, we implemented two different instantiations of the algorithm. The first implementation
is for Java programs, built on the Checker Framework [Papi et al. 2008] that supports type checking,
local type inference, and abstract interpretation. The second implementation is for C# programs,
built on the CodeQL framework [Microsoft 2023] that provides a Datalog-like declarative code
query language for building custom program analyses.

We performed an experimental evaluation on programs that had been manually annotated and
verified (in some cases the verification required suppressing false positive warnings). We ran our
technique on un-annotated versions of the programs, and it inferred most of the hand-written
annotations (85.5%). Further, most remaining verifier warnings are due to true positive issues in
the code or verifier imprecision, not missing or incorrectly-inferred annotations.

Contributions. This paper makes the following contributions:

(1) a novel optimistic inference algorithm for resource management specifications, designed to
infer specifications likely intended by the developer;

(2) a formalization of the algorithm that is generic across programming languages;
(3) implementations for Java and for C#, demonstrating the generality of our approach;
(4) experiments that show that the approach is effective in practice.

2 BACKGROUND: RESOURCE MANAGEMENT SPECIFICATIONS

Every program must follow the contract that after a resource is acquired, the resource must be
released, permitting the runtime or operating system to reuse the resource. We call the method
releasing a resource the “disposal method.” In Java, the disposal method is often named close, while
in C# it is often named Dispose. It is an obligation on the programmer to call this method on each
object managing a resource after the program is done using it.
Section 2.1 reviews the syntax and semantics for the specifications used by the Resource Leak

Checker [Kellogg et al. 2021], via which a programmer communicates how the program allocates
resources, passes them around, and releases them. Section 2.2 gives an example resource man-
agement specification using this specification language, and finally Section 2.3 briefly describes
modular verification of these specifications.

2.1 Annotation Syntax and Semantics

A resource management specification is expressed in Java as annotations, which start with an
at-sign (@). C# uses attributes instead, which are enclosed within square brackets ([. . .]). This
section uses the Java syntax [Kellogg et al. 2021]. There are annotations for expressing required
and guaranteed calls, lightweight ownership hints, and resource aliasing. For additional details, see
the Resource Leak Checker manual [CheckerRLC 2023].

@MustCall(m) is a type qualifier that modifies a type. The argument m is a method that must be
called on any value of that type. We call m the type’s must-call obligation. @MustCall() (without
an annotation argument) means that no method is required to be called. A type qualifier can be
written on a type use or a type declaration.

Here is an example of a @MustCall annotation on a type use:2

@MustCall("print") Diagnostic explainToUser() { ... }

2Our code examples use boldface for declared identifiers and blue for resource leak specifications.
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The return type of explainToUser is @MustCall("print") Diagnostic, where @MustCall("print") is
a type qualifier and Diagnostic is the Java basetype. The program must call print on the returned
diagnostic. This annotation ensures that a client does not create a diagnostic but forget to print it.
When written on a type definition, a @MustCall annotation indicates a method that must be

called on every object of that type (including subtypes). For example, the JDK’s java.io.Closeable
interface is specified as:

@MustCall("close") // close() must be invoked on every Closeable object

public interface Closeable { ... }

This annotation makes writing Closeable equivalent to writing @MustCall("close") Closeable.
That behavior may be overridden: here is an annotation on a type use in java.io.OutputStream:

@MustCall() OutputStream nullOutputStream() { ... }

This method returns an OutputStream with no must-call obligation, because a null output stream
need not be closed.

@Calls(exprs, methods) is a method annotation. When written on a method<, it means that<
guarantees that all methods in methods are called on all expressions referenced in exprs.3 Here are
two examples using @Calls:

// This method reads the first ("#1") formal parameter (x), then closes it.

@Calls(exprs = "#1", methods = "close")

public int readAndCloseStream(IntStream x) { ... }

// This method guarantees close() is called on two fields

@Calls(exprs={"this.ownedField1", "this.ownedField2"}, methods="close")

public void closeFields() { ... }

@Calls enables modular verification in cases where a resource is closed in a callee, e.g.:

IntStream y = new IntStream();

// guaranteed to close y, based on the @Calls annotation

readAndCloseStream(y);

@Calls is also used for verification of “wrapper” types that store resources in fields, to be illustrated
in Section 2.2. Prior work referred to @Calls as @EnsuresCalledMethods [Kellogg et al. 2021].

@Owning and @NotOwning express a form of lightweight ownership and ownership transfer. When
two aliases exist for the same object, these annotations indicate which alias is responsible for
fulfilling must-call obligations. Also, an @Owning annotation on a field declaration indicates that the
enclosing class is responsible for satisfying the field’s must-call obligation at the end of its lifecycle
(the “resource acquisition is initialization” pattern [Stroustrup 1994, §16.5]). See Section 2.2 for
example uses of these annotations.

Unlike full-fledged ownership type systems, as in Clarke et al. [1998] or the Rust programming
language [Klabnik and Nichols 2018], lightweight ownership places no restrictions on pointer
aliasing in the program. @Owning and @NotOwning annotations serve only as “hints” to the verifier
regarding which reference is responsible for closing a resource, and do not impact soundness of
verification. Lightweight ownership suffices since we seek only to verify that resources are freed,
not to verify the absence of use-after-free or double-free bugs [Kellogg et al. 2021]. By default,
formal parameter types are @NotOwning and return types are @Owning.

3The guarantee only holds when< terminates normally, without throwing an exception.
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1 @MustCall("dispose")

2 class MySqlCon {

3 private final @Owning Connection con;

4

5 @ResourceAlias MySqlCon(

6 @ResourceAlias Connection con) {

7 this.con = con;

8 }

9

10 void use() { ... }

11

12 @Calls("this.con", "close")

13 void dispose() {

14 closeCon(this.con);

15 }

16

17 static @Owning Connection createCon() {

18 Connection obj = ...;

19 return obj;

20 }

21 static void useCon(@NotOwning Connection obj)

22 { ... }

23

24 static void closeCon(@Owning Connection obj) {

25 obj.close();

26 }

27 } // end of class MySqlCon

28

29

30 static void client() {

31 Connection con1 = MySqlCon.createCon();

32 MySqlCon mySqlCon1 = new MySqlCon(con1);

33 mySqlCon1.use();

34 if (...)

35 con1.close();

36 else

37 mySqlCon1.dispose();

38 }

Fig. 1. Example resource management specifications. The Resource Leak Checker can modularly verify the
absence of resource leaks in this code. Given this program without annotations, our resource specification
inference can infer all the annotations.

@ResourceAlias4 captures a “resource-aliasing” relationship. Resource aliases are either standard
must-aliased references or references to distinct objects that manage the same underlying re-
source [Kellogg et al. 2021]. Fulfilling the must-call obligation of an expression also fulfills the
obligation of all of its resource aliases. @ResourceAlias annotations specify a resource-alias rela-
tionship between a method’s return value (or, for a constructor, the newly-allocated object) and
one of its parameters. As an example, consider this method in java.net.Socket:

class Socket {

@ResourceAlias OutputStream getOutputStream(@ResourceAlias Socket this) { ... }

}

The @ResourceAlias annotations denote that the OutputStream returned by getOutputStream

is a resource alias of its receiver argument. So, calling close() on the returned OutputStream is
equivalent to calling close() on the Socket: calling either one is sufficient to release the underlying
resource.

2.2 Resource Management Specification Example

Figure 1 shows a class MySqlCon annotated with a resource management specification and a client
usage that can be verified as correct. The techniques of this paper can automatically infer all the
annotations written in the example, which prior work [Kellogg et al. 2021] required a human to
provide.
In fig. 1, field con (line 3) has qualified type @MustCall("close") Connection. It implicitly has

the qualifier @MustCall("close") because java.sql.Connection objects manage a resource, so the
Connection class is annotated as @MustCall("close") in the JDK (that is, in the verifier’s standard
library model). The con field is annotated as @Owning: this implies that the enclosing MySqlCon

class must have a must-call method that satisfies con’s must-call obligation. Accordingly, the

4In the implementation, this annotation is named @MustCallAlias, because it is more general than resources.
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MySqlCon class is annotated @MustCall("dispose") (line 1), and its dispose method is annotated
@Calls("this.con", "close") (line 12), indicating it guarantees close() is called on this.con.

The MySqlCon constructor stores its argument in field con (line 7). The @ResourceAlias annotations
on the constructor (lines 5 and 6) indicate that the argument and the new object are “resource
aliases”: fulfilling the must-call obligations of one object also fulfills the obligations of the other
object. The Resource Leak Checker can validate method client (line 30) — that is, prove that client
releases all resources — because the @ResourceAlias annotations show that con1 and mySqlCon1

(lines 31–32) are resource aliases.
@Owning and @NotOwning annotations on parameters and return types indicate which object

reference is responsible for fulfilling must-call obligations. Consider the static methods in fig. 1
(starting at line 17). The factory method createCon returns an @Owning Connection, indicating the
caller is responsible for closing it. useCon has a @NotOwning annotation on its parameter (line 21),
indicating it will not take responsibility for closing its parameter. @Owning is the default for returns,
and @NotOwning is the default for parameters, so the annotations on lines 17 and 21 are unnecessary;
fig. 1 shows them for emphasis. closeCon does take ownership of its argument (line 24), and the
closeCon call on line 14 enables the tool to verify the @Calls annotation on line 12.

2.3 Modular Verification

A program annotated with a resource management specification can bemodularly verified [Kellogg
et al. 2021]. The key intuition is that resource leak detection (but not other related problems, such as
proving the absence of use-after-free bugs) is an instance of an accumulation problem [Kellogg et al.
2022], which is a restricted class of typestate analysis [Strom and Yemini 1986] that admits sound
verification even in the presence of arbitrary, untracked aliasing. Instead, a verifier can perform an
intra-procedural dataflow analysis, computing for each program point a set of pairs ⟨+ , 4⟩, where 4
is an expression with a non-empty @MustCall obligation, and+ is a set of resource-aliased variables
referencing 4 . If a statement B ensures 4’s @MustCall obligation is satisfied via an operation on some
variable in + , then ⟨+ , 4⟩ is not propagated to successors of B . If some ⟨+ , 4⟩ reaches a method
CFG’s exit node, a resource leak warning is reported.
The @Owning and @Calls annotations of section 2.1 enable modular verification by informing

the verifier when a @MustCall obligation is satisfied via another method or alias. A @MustCall("m")

obligation for 4 is considered satisfied when m is directly invoked on 4 , but also in the following
cases (which rely on annotations): 4 is returned and the method’s return type is @Owning, 4 is passed
to another method’s @Owning parameter, 4 is written to an @Owning field, or 4 is passed to a method
whose @Calls specification ensures m will be called on 4 . The verifier also uses @ResourceAlias

annotations on invoked methods to update its set of resource aliases for an expression, improving
precision (e.g., when verifying the client method in fig. 1, discussed in section 2.2).
A modular verifier must also ensure that all annotations respect standard subtyping rules in

the presence of method overriding and other features of real object-oriented languages. E.g., if a
supertype method has a @Calls annotation, the @Calls annotation on any overriding method must
be at least as strong, i.e., it should guarantee that at least the same methods are called. Similarly, if
a supertype method parameter is @Owning, the corresponding parameter in an overriding method
must also be @Owning, and if a supertype method return type is @NotOwning, an overriding method’s
return type should also be @NotOwning. By enforcing standard subtyping rules, modular verification
can proceed without constructing a call graph: a call site can be analyzed using the declared target,
since any overriding method must respect its specification.
Finally, for soundness, all @Calls, @Owning, and @ResourceAlias annotations must be verified,

which can also be done modularly. For further details, see Kellogg et al. [2021].
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3 INFERENCE

This section presents declarative rules for our inference algorithm and discusses key properties of
the algorithm. Section 3.1 provides the intuition behind optimistic inference. Section 3.2 introduces
our inference rule syntax and the base program facts it relies on. Section 3.3 gives rules for phase 1
of inference, and Section 3.4 gives rules for phase 2. Finally, Section 3.5 discusses key properties of
the inference algorithm.

3.1 Optimistic Inference

Given a program % (possibly partially annotated), the goal of our optimistic inference is to discover
a resource management specification that most likely matches the intended specification of the
developer. In the case where % is free of leaks, ideally the inferred annotations would allow a
modular verification tool to verify % . A classical type inference approach is to recast the type-
checking rules as constraints, then solve the constraints. This approach does not work in our
context because the verification algorithm is not expressible as a type system (though parts of it
are): for example, @Owning is not a type qualifier but instead a hint to the verifier. Inference in our
context therefore requires a novel algorithm.
Ideally, optimistic inference should infer the programmer’s intention even for buggy programs

that leak resources on some paths. Consider a class SocketWrapper wrapping two sockets socket1
and socket2, with the following cleanup() method:

void cleanup() throws IOException {

socket1.close();

socket2.close();

}

This method does not necessarily close socket2, because socket1.close() could throw an ex-
ception. An inference technique that accurately reflects the code’s behavior would infer only
@Calls("socket1", "close") for thismethod, rather than @Calls({"socket1", "socket2"}, "close").
The former specification hinders inference in other parts of the program and, when used by a
verification tool, leads to confusing false positive alarms at call sites of cleanup. By contrast, the
latter specification reflects programmer intent, and a verification tool issues an error within cleanup,
exactly where a programmer needs to fix the bug. The rules described in the next sections employ
this optimistic approach.

3.2 Inference Rule Syntax and Base Facts

Our inference rule formalism is language-independent, subsuming object-oriented languages such
as C# and Java. For simplicity and without loss of generality, our formalism assumes a name exists
for any expression with a non-empty @MustCall obligation; this can be satisfied via introduction of
temporary variables. In our formalism, every constructor takes one parameter, and every other
method takes two parameters: the receiver parameter and one additional formal parameter. Formal
parameters are final (unassignable). Our formalism does not include static methods and fields. These
restrictions are similar to other formalisms [Igarashi et al. 2001]. Our implementations handle the
full C# and Java languages.
Table 1 shows the input facts that represent program constructs. Optimistic inference arises

from the fact that our inference uses a may-analysis, but verification performs a must-analysis.
The optimism originates from the facts in table 1 that contain “exists” and propagates through
the inference rules shown in figs. 2 and 3. For instance, Invokes(B,<, =, A, ?) checks whether there
exists a statement B in method< that invokes method = with receiver A and other parameters ? .
However, verification requires that such a method = is successfully executed on all paths in<. The
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Table 1. The input facts that represent program constructs.

Name Definition

Field(5 ,�) 5 is a field of class �

Method(<,�) < is a non-constructor method of class �

AbstractMethod(<,�) < is an abstract method of class �

Constructor(<,�) < is a constructor of class �

FieldType(5 ,) ) field 5 has basetype ) (the basetype elides type qualifiers like @Must-

Call)

ReturnType(<,) ) method< has return basetype )

ParamType(<,) ) method<’s parameter has basetype )

Invokes(B,<, =, A, ?) there exists statement B inmethod< that invokesmethod=with receiver

A and other argument ? (optimistic)

WritesField(B,<, 5 , E) there exists statement B in method< that writes variable E to field 5 of

this (optimistic)

NotWrittenAfter(5 , B,<) field 5 is not assigned after statement B in method<. It can be computed

from<’s control-flow graph.

Returns(B,<, E) there exists statement B in method< that returns E (optimistic)

ThisOrSuperCall(B,<,<′, E) there exists statement B in constructor< that is a this() or super() call

invoking constructor<′, passing E as the parameter (optimistic)

inference optimistically assumes that if a programmer wrote a disposal method call on one path,
the programmer intended to write it on all paths.
Our inference rules, presented in figs. 2 and 3, are written in the style of Datalog rules, though

in places they use logical conditions beyond what Datalog can express (our implementations are
not based on pure Datalog solvers). The rules are of the form fact ← condition, . . ., indicating that
the fact is inferred when all conditions after the arrow hold. Facts and conditions have parameters
that must be matched; the _ parameter always matches.
In figs. 2 and 3, *Annot facts represent annotations inferred by the algorithm. In

ParamAnnot(_, _, ?) (a formal parameter annotation), ? is the name of the method’s non-receiver
formal parameter. If the input program already contains a partial resourcemanagement specification,
its annotations can be represented as input facts.
Our inference algorithm proceeds in two phases. The first phase (section 3.3) infers ownership

and disposal methods: @MustCall annotations for classes, @Owning for fields and some method
parameters, and @Calls for disposal methods. The second phase (section 3.4) infers all remaining
annotation types. Two phases are required since the second phase rules rely on the ownership and
disposal method annotations inferred by the first phase.

3.3 Phase 1: Ownership and Destructors

Figure 2 gives rules for the first phase of inference. FieldDisposal(5 ,<fd) (rule 3 in fig. 2) means
that <fd is the direct disposal method for the type ) of field 5 ; that is, the declaration of ) is
annotated with @MustCall(<fd). Other methods might also be guaranteed to dispose of 5 , if they
are annotated @Calls(5 ,<fd).

Figure 2 gives three rules for inferring a @Calls(5 ,<fd) method annotation: when<fd is invoked

directly (rule 4 ), when another method<′ with an appropriate @Calls annotation is invoked (rule
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ClassAnnot(@MustCall(<cd),�) ← 1

Method(<cd ,�),

¬ClassAnnot(@MustCall(<′
cd
),�),

∀5 ∈ OwningFields(�) :

FieldDisposal(5 ,<fd ),

MethodAnnot(@Calls(5 ,<fd),<cd )

FieldAnnot(@Owning, 5 ) ← 2

Field(5 ,�),Method(<,�),

FieldDisposal(5 ,<fd ),

MethodAnnot(@Calls(5 ,<fd),<)

FieldDisposal(5 ,<fd ) ← 3

FieldType(5 ,) ),

ClassAnnot(@MustCall(<fd),) )

MethodAnnot(@Calls(5 ,<fd),<) ← 4

FieldDisposal(5 ,<fd ), Invokes(B,<,<fd , 5 , _),

NotWrittenAfter(5 , B,<)

MethodAnnot(@Calls(5 ,<fd),<) ← 5

FieldDisposal(5 ,<fd ),

Invokes(B,<,<′, this, _),

MethodAnnot(@Calls(5 ,<fd),<
′),

NotWrittenAfter(5 , B,<)

MethodAnnot(@Calls(5 ,<′),<) ← 6

Invokes(B,<,<′, _, 5 ),

ParamAnnot(@Owning,<′, _),

NotWrittenAfter(5 , B,<)

ParamAnnot(@Owning,<, ?) ← 7

ParamType(<,) ),

ClassAnnot(@MustCall(<pd),) ),

Invokes(B,<,<pd , ?, _)

ParamAnnot(@Owning,<, ?) ← 8

Invokes(B,<,<′, _, ?),

ParamAnnot(@Owning,<′, _)

Fig. 2. Phase 1 of inference: rules for inferring @Calls, @Owning fields and parameters, and @MustCall on
classes.

AlwaysWrittenToOwningField(?,<) ← 9

∀path ∈ NormalPaths(<) . ∃ B ∈ path.

ResourceAlias(B, ?, A ),WritesField(B,<, 5 , A ),

FieldAnnot(@Owning, 5 ),

NotWrittenAfter(5 , B,<)

ParamAnnot(@Owning,<, ?) ← 10

ResourceAlias(B, ?, A ), Invokes(B,<,<′, _, A ),

ParamAnnot(@Owning,<′, _)

ParamAnnot(@Owning,<, ?) ← 11

Constructor(<,�), |OwningFields(�) | > 1,

AlwaysWrittenToOwningField(?,<)

ParamAnnot(@Owning,<, ?) ← 12

ParamType(<,) ),

ClassAnnot(@MustCall(<pd),) ),

ResourceAlias(B, ?, A ), Invokes(B,<,<pd , A , _)

ParamAnnot(@ResourceAlias,<, ?), 13

ReturnAnnot(@ResourceAlias,<) ←

Constructor(<,�), |OwningFields(�) | = 1,

AlwaysWrittenToOwningField(?,<)

ParamAnnot(@ResourceAlias,<, ?), 14

ReturnAnnot(@ResourceAlias,<) ←

Constructor(<,�), ResourceAlias(B, ?, A ),

ThisOrSuperCall(B,<,<′, A ),

ParamAnnot(@ResourceAlias,<′, _),

NotWrittenAfter(B, 5 ,<)

ParamAnnot(@ResourceAlias,<, ?), 15

ReturnAnnot(@ResourceAlias,<) ←

Method(<, _),

∀path ∈ NormalPaths(<) . ∃ B ∈ path.

ResourceAlias(B, ?, A ), Returns(B,<, A )

ReturnAnnot(@NotOwning,<) ← 16

Method(<,�), ReturnType(<,) ),

ClassAnnot(@MustCall(_),) ),

Field(5 ,�), Returns(B,<, 5 )

Fig. 3. Phase 2 of inference: rules for inferring @ResourceAlias, @Owning, and @NotOwning parameters.
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5 ), and when 5 is passed to an @Owning parameter (rule 6 ). For all three cases,NotWrittenAfter

ensures the field is not overwritten after its @MustCall method is invoked.
Two rules ( 7 and 8 ) infer a limited set of @Owning parameters, one for when the disposal method

is directly invoked on a parameter, and one for when a parameter is passed to another method in an
@Owning position. Rules for the second phase (section 3.4) infer a larger set of @Owning parameters,
but we found that limited inference of @Owning parameters in phase 1 was important for discovering
certain class disposal methods.
An @Owning annotation is inferred for a field when some method in the enclosing class invokes

its @MustCall method, as captured by an inferred @Calls annotation (rule 2 ).
The rule for inferring @MustCall annotations for a class � (rule 1 ) is a bit more complex. The

rule aims to identify a single instance method< in � that, when called, is guaranteed to satisfy
the @MustCall obligations of all @Owning fields in C. The rule allows for inferring at most one @Must-
Call annotation per class. Multiple suitable methods could be handled by a @MustCall qualifier
supporting disjunction, but this is not supported by the current verifiers.
Note that inferring @MustCall on classes relies on inference of @Owning fields, and inference of

@Owning fields may rely on inferred @MustCall class annotations. This cyclic dependence could lead
to problems in cases where a class has multiple @Owning fields of a user-defined type, e.g.:

class Wrapper {

@Owning MyResource1 f1;

@Owning MyResource2 f2;

...

}

Suppose that MyResource1 and MyResource2 each have a class disposal method (non-empty @Must-

Call annotations on the definitions of MyResource1 and MyResource2) that must be discovered by
inference. An issue arises if these @MustCall annotations are discovered at different times during
inference. In such a case, inference may first annotate just one of the fields as @Owning and infer
a @MustCall annotation for the class based just on this field. Then, the discovery of the second
@Owning field may invalidate the previously-inferred @MustCall annotation. An inference engine
that allowed for retracting inferred facts could handle this scenario.

This bad case is rare in practice. A class with @Owning fields usually has a single public method that
closes all the fields, thereby excluding the possibility of initially inferring an incorrect @MustCall
class annotation. In general, a dependence graph between classes could be used to analyze classes in
an order that avoids these ordering issues; we do not formalize this extension. Our implementations
ensure that, while analyzing class � , all @Owning fields within � are discovered before inferring the
@MustCall annotation for � (using the current @MustCall types for other classes).

3.4 Phase 2: Remaining Annotations

Figure 3 gives rules for the second phase of inference, which handles all remaining annotations. The
fig. 3 rules for inferring @ResourceAlias and @Owning annotations rely on ResourceAlias(B, ?, A )

facts. The fact ResourceAlias(B, ?, A ) means that variables ? and A are resource aliases at the pro-
gram point immediately before statement B . Resource aliases can be computed via a straightforward
extension to any algorithm for computing must-aliased variables. The three key properties of
resource aliases are:

(1) Every variable is always a resource alias of itself.
(2) All must-aliased pointers at a program point are resource aliases.
(3) Given a call p = m(q), if method< is annotated with @ResourceAlias on its parameter and

return type, ? and @ are resource aliases at the program point immediately after the call.
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Due to property 3, resource aliases must be re-computed as new @ResourceAlias annotations are
inferred. Many rules in fig. 3 allow for operations to be performed through a resource alias of the
parameter; below we simply say “the parameter” to mean the parameter or its resource aliases.

@ResourceAlias annotations are only valid in pairs, one on the return of a method and the other
on its parameter. Figure 3 has three rules for inferring these @ResourceAlias pairs, capturing the
different conditions that will allow the annotations to be verified. The first rule ( 13 in fig. 3) infers
@ResourceAlias on a constructor if its parameter is always written into an @Owning field of the class,
and if the class has exactly one @Owning field. This rule leverages a helper rule AlwaysWritten-

ToOwningField (rule 9 ), which checks for appropriate field writes on all normal CFG paths
through the method, i.e., all paths corresponding to the method exiting without throwing an excep-
tion. (Our implementations use standard dataflow analysis techniques rather than enumerating
paths.) The second rule ( 14 ) captures a constructor passing its parameter to another constructor
that already has a @ResourceAlias parameter. The third rule ( 15 ) handles a method that always
returns (a resource alias of) its parameter.

Figure 3 also gives rules for inferring @Owning annotations on parameters. Phase one of inference
inferred a limited number of parameter @Owning annotations (see rules 7 and 8 in fig. 2); in
phase two, more can be inferred due to use of resource aliases. Two rules ( 10 and 12 ) match the
ParamAnnot(@Owning) rules of fig. 2, but also allow operations to occur through resource aliases
(rule 10 matches rule 8 , and 12 matches 7 ). Note that these two rules do not require that the
operation occur on all paths (that is, they are optimistic); in our experience, an invocation of a
@MustCall method strongly implies an intent to take ownership, even if the call does not occur on
all paths. The final rule ( 11 ) is similar to the first rule for inferring @ResourceAlias (rule 13 ) but
handles the case where a class has multiple @Owning fields. In the case of a single @Owning field, we
prefer to infer @ResourceAlias on a constructor, since it gives client code the flexibility to finalize
either the passed-in resource or the newly-allocated object.

Finally, fig. 3 gives a rule ( 16 ) for inferring @NotOwning annotations. @NotOwning is inferred when
a method’s return type has a non-empty @MustCall type and the method acts as a “getter,” returning
an instance field of the class. In such cases, verifiers cannot reason about callers satisfying the
@MustCall obligation of the field, so there is no purpose in making the return type @Owning.

3.4.1 Example. We illustrate our inference rules and their interactions using the example of fig. 1.
Assume the program initially has no annotations. In phase 1, the first rule from fig. 2 for @Owning
parameters (rule 7 ) infers an @Owning annotation for the closeCon parameter (line 24), since
closeCon invokes close on its parameter. Given this @Owning parameter, the final rule for inferring
@Calls (rule 6 ) then applies to dispose, yielding the @Calls("this.con", "close") annotation on
line 12. In turn, this @Calls annotation enables the rule for inferring @Owning on fields ( 2 ), yielding
the @Owning annotation on line 3. Finally, all annotations are in place to infer @MustCall("dispose")
on the MySqlCon class, via rule 1 of fig. 2, concluding phase 1.

In phase 2, @ResourceAlias annotations are inferred for the constructor of MySqlCon (lines 5 and 6),
via rule 13 of fig. 3, concluding inference for this example. (Recall that the @Owning annotation
on line 17 and the @NotOwning annotation on line 21 are the defaults.) These inferred annotations
enable the client method in fig. 1 to pass the verifier.

3.4.2 Non-final Owning Fields. The Resource Leak Checker supports another specification anno-
tation: @CreatesMustCallFor(value), which indicates that a method resets the value expression’s
must-call obligations. This annotation can be useful for specifying certain limited usages of non-
final @Owning fields. As an example, consider a variant of the MySqlCon class from fig. 1. In the variant
the con field is not final:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 282. Publication date: October 2023.



282:12 Shadab, Gharat, Tiwari, Ernst, Kellogg, Lahiri, Lal, and Sridharan

class MySqlCon {

private @Owning Connection con;

... // previous code

@CreatesMustCallFor("this")

void reset() {

if (this.con != null)

this.con.dispose();

this.con = createCon();

}

}

static void client2() {

Connection con2 = MySqlCon.createCon();

MySqlCon mySqlCon2 = new MySqlCon(con2);

mySqlCon2.use();

mySqlCon2.reset();

mySqlCon2.use();

mySqlCon2.dispose();

}

Here, the @CreatesMustCallFor("this") annotation on reset allows the Resource Leak Checker to
verify that this code is free of leaks. The checker ensures that any resource stored in con is disposed
before con is overwritten, and that clients are again obligated to dispose of MySqlCon objects after
reset is called.
We implemented inference of @CreatesMustCallFor, but then disabled it, due to the fact that

only restricted usage patterns can currently be verified. In our experience, verifiable code using
@CreatesMustCallFor like that shown above is rare; most real-world code with non-final fields
either uses more complex protocols or is just buggy. The data in Kellogg et al. [2021] itself showed
that the overall impact of @CreatesMustCallFor was questionable at best (see Table 3 of Kellogg
et al. [2021]).
In our experience, inference of @CreatesMustCallFor across large code bases leads to further

problems not described by Kellogg et al. [2021]. For soundness, when a method m is annotated with
@CreatesMustCallFor, the annotation must then also appear on all instance methods of the class
that transitively invoke m, all methods that m overrides, and all methods that override m. Further,
most clients of these methods with inferred @CreatesMustCallFor annotations could not be verified,
as they did not follow the restricted usage pattern supported by the verifier.
The stringent rules for verifying @CreatesMustCallFor annotations should not be surprising,

because storing a resource in a non-final @Owning field is risky: the field could be overwritten, and
the only reference to the resource lost, yielding a leak. This riskiness has made us believe that
re-assigning non-final @Owning fields is in fact an anti-pattern that should be avoided whenever
possible. So, our inference is configured to infer @Owning on non-final fields as appropriate, but not
to infer @CreatesMustCallFor. With this configuration, any overwrite of such a field will yield a
warning from the checker, encouraging the developer to shift to a different resource management
protocol. Section 5 shows that this decision does not significantly hinder the effectiveness of our
inference in practice.

3.5 Key Algorithm Properties

Regarding termination, our inference algorithm applies the rules of sections 3.3 and 3.4 until a
fixed point is reached. This aspect of the algorithm terminates: the rules only add annotations
(never removing them), and there are a finite number of possible annotations that can be inferred.
(Annotations like @Calls and @MustCall are parameterized, but there are a finite number of possible
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parameter values.) As noted in section 3.4, ResourceAlias facts may need to be re-computed after
new @ResourceAlias annotations are inferred. Assuming resource aliases are computed using a
standard dataflow analysis expressible in the monotone framework [Kam and Ullman 1977] (e.g.,
the algorithm given in Kellogg et al. [2021]), these re-computations will also terminate, as new
@ResourceAlias annotations monotonically increase the set of resource aliases after calls.

The rules in figs. 2 and 3 alone do not guarantee that inference is deterministic and will produce
a unique solution; guaranteeing determinism for our algorithm requires additional side constraints.
The only possible non-determinism arises from the rule for inferring @MustCall on classes in fig. 2
(rule 1 ), particularly from cases where there are multiple candidate @MustCall methods for a
class, and for cases with multiple @Owning fields of user-defined type (previously discussed at the
end of section 3.3). The former issue can addressed by giving a deterministic rule for choosing
the @MustCall method from possible candidates, and (as noted in section 3.3) the latter issue can
addressed by requiring that classes be processed in order according to their dependencies, breaking
cycles arbitrarily but deterministically. Our implementations are deterministic.
Type inference algorithms are often evaluated based on their soundness and completeness.

A sound type inference algorithm only infers annotations that are verifiable. As noted earlier,
our optimistic inference is deliberately unsound, as we found this necessary to best capture the
specifications intended by developers. However, the combination of optimistic inference plus a
sound verification tool is sound in the following way: if after inference, the verifier reports no
warnings, the program is guaranteed to be free of resource leaks. This is the same guarantee that
the verification tool offers to a human annotator.
A type inference algorithm is complete if it is guaranteed to discover a set of annotations that

would make an input program type check, if such a set exists. Unfortunately, there are certain cases
where our algorithm is incomplete. One case involves types with multiple @Owning fields, like the
following:

class Wrapper implements Closeable {

final Socket s1;

final Socket s2;

Wrapper(Socket s1, Socket s2) {

this.s1 = s1; this.s2 = s2;

}

...

}

The problem is a lack of expressivity in the resource management specification language: there
is no way to express that either the Wrapper or both the wrapped Sockets must be closed. Assuming
Wrapper has a @MustCall method that closes both of the fields, our inference will make both of the
fields and both the constructor parameters @Owning. However, consider the following client code
(exception handling elided):

Socket s1 = ..., s2 = ...;

Wrapper w = new Wrapper(s1,s2);

s1.close(); s2.close();

Since Wrapper’s constructor parameters were inferred to be @Owning, client code must release those
Sockets by invoking Wrapper.close() to pass the verifier. The verifier will warn about not closing
w in the code above, even though there is no leak. We did not encounter code of this type in
our experiments. If the Wrapper type above had a single Socket field, our algorithm would infer
@ResourceAlias annotations instead, which allow for either the Wrapper or the wrapped Socket to
be closed.
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Similarly, our algorithm may be incomplete if there are multiple valid @MustCall methods for a
class, but the algorithm chooses the wrong one for the class annotation. We did observe this to
occur rarely in our benchmarks; see discussion of fig. 4 in section 5. As discussed in section 3.3, a
@MustCall annotation supporting disjunction could solve this issue.

4 IMPLEMENTATION

To demonstrate the generality of our approach, we developed two separate implementations of our
inference algorithm. The first implementation works for Java programs, producing annotations
that are compatible with the original Resource Leak Checker [Kellogg et al. 2021]. The second
implementation targets C# programs and generates annotations suitable for use with RLC# [Gharat
et al. 2023], an independent implementation of resource management verification for C#. We
describe these implementations in turn.

4.1 Java Inference

The Resource Leak Checker [Kellogg et al. 2021] is built using the Checker Framework, a framework
for building pluggable type systems and abstract interpretations (dataflow analyses) [Papi et al.
2008]. Our Java inference implementation is also built on the Checker Framework, leveraging its
whole-program inference (WPI) infrastructure [CheckerWPI 2023; Kellogg et al. 2023]. WPI infers
type qualifiers by repeatedly running a checker over the input code, using facts it derives to insert
new qualifiers on each run, until a fixed point is reached. This built-in WPI functionality cannot
infer resource management specifications, as the annotations are mostly not type qualifiers (see
section 1).

Our implementation re-uses the WPI fixed-point infrastructure, running alongside the original
Resource Leak Checker. After the Resource Leak Checker runs on each method, inference runs as a
post-analysis pass, applying the rules of section 3 to discover new annotations. Inference re-uses
intermediate results computed by the checker, in particular its computation of resource aliases
(see section 3.4); this re-use saves computation and guarantees results consistent with the checker.
After each iteration, any newly-inferred annotations are persisted into specification files, and
these persisted annotations are visible to subsequent iterations. In our experiments, the algorithm
converges after an average of six iterations.

Our current implementation is inefficient, in that it re-analyzes all the program code in each top-
level iteration. Using a worklist to only re-analyze necessary methods and classes would be more
efficient, but the Checker Framework does not support it. We plan to optimize our implementation
in the future (borrowing techniques from our C# inference implementation; see section 4.2). But,
since we expect inference to be run infrequently, the speed of the current implementation is not a
critical concern.

Our implementation is currently undergoing code review so that it can be incorporated into the
Checker Framework. A future release of the framework will include it.

4.2 C# Inference

RLC# [Gharat et al. 2023] is a resource leak checker for C#, built using CodeQL [Microsoft 2023].
Whereas RLC can be viewed as solving an accumulation-based problem, RLC# can be viewed as
solving a reachability-based problem — a significantly different design approach. RLC# uses the
local data flow engine of CodeQL [CodeQLCSharpDataflow 2023] for intra-procedural analysis, and
it uses the specification language of section 2.1 for inter-procedural reasoning (via C# attributes
rather than Java annotations).
There are two major language-dependent differences between RLC and RLC#:
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Table 2. The portion of hand-wri�en annotations that our algorithm inferred. The “MWA” column gives the
total number of manually-wri�en annotations for each benchmark.

@Owning @Must- @Must-
final non-final Call- Call @Not-

MWA fields fields params Alias on class @Calls Owning Total

Service 1 21 5/5 2/2 0/0 0/0 8/8 6/6 0/0 100%
Service 2 28 3/3 5/5 1/1 2/2 8/8 8/8 1/1 100%
Service 3 24 7/7 1/1 0/0 0/0 8/8 8/8 0/0 100%

Lucene.Net 63 7/7 7/7 13/13 6/6 13/14 12/13 2/3 95%
EF Core 25 1/2 3/3 0/1 2/6 5/6 5/6 1/1 68%

zookeeper 93 6/6 12/16 3/6 18/20 12/25 7/12 8/8 71%
hadoop-hdfs 91 14/17 3/3 10/12 16/23 16/18 2/7 8/11 76%

Hbase 35 7/7 1/1 3/3 0/2 7/11 4/6 4/5 74%

Total - 93% 89% 83% 75% 79% 76% 83% -

• Java supports the concept of checked and unchecked exceptions, whereas C# only has
unchecked exceptions. Both RLC and RLC# handle unchecked exceptions unsoundly. This
does not impact Java applications because all the critical exceptions in Java are checked.
However, the impact is significant in C# applications.
• For generic types, Java supports type erasure which is not supported by C#. As a result, C#
inference must explicitly associate annotations with each bound for the type parameters. This
makes adding annotations in the source code for generic types difficult. We avoid this issue
by adding annotations as logical formulae inside the CodeQL query instead of the source
code. The logical formula identifies the location and the program element in the source where
we need to add an annotation. Annotations as logical formulae avoids repetitive building of
code and creating a CodeQL database with every addition of a new annotation.

We implemented our inference algorithm using the same infrastructure as that of RLC#. The
inference rules described in section 3 are expressed as a custom query in the CodeQL query language.
Then, CodeQL manages the inference fixed point computation internally. As the CodeQL fixed
point engine is highly tuned, this inference implementation is much faster than our current Java
implementation. Finally, the CodeQL query generates a CSV file containing all inferred annotations.
Note that unlike the Java implementation, our C# inference does not repeatedly run the RLC#
verifier; instead, relevant logic is shared at the CodeQL query level as needed. This strategy also
provides a performance boost, as certain expensive verification computations need not be run
during inference.

5 EVALUATION

This section presents an experimental evaluation of our two inference implementations. Our
evaluation aims to answer these research questions:

• RQ1: How effective is inference in recovering annotations that were previously added
manually?
• RQ2: How effective is inference in exposing true positive bugs (resource leaks) related to
both library types and user-defined types?
• RQ3: After running inference, what percentage of the verifier warnings relate to missing or
incorrect annotations?
• RQ4:What is the running time of inference?
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To answer these questions, we ran inference on a suite of Java and C# benchmarks. The results show
that our inference technique is effective and makes the specify-and-check approach for resource
management verification more practical.

5.1 Recovering Manual Annotations

5.1.1 Benchmarks. To answer RQ1, we collected a suite of Java and C# benchmarks that had been
manually annotated to pass the Resource Leak Checker and RLC#, respectively. For Java, we re-used
the three large benchmarks from Kellogg et al. [2021], as their artifact provided annotated versions
of these benchmarks. The benchmark sizes are shown in table 4; we ran on the exact same modules
used in Kellogg et al. [2021]. We updated the annotations as needed to work with the most recent
version of the Resource Leak Checker.

For C#, we selected as benchmarks three proprietary microservices (referred to as Service
1, Service 2, and Service 3), and also two open-source projects, Lucene.NET and EF Core.
Lucene.NET [Lucene.NET 2023] is a port of the Lucene search library to C#. EF Core [EF Core 2023]
is an object-database mapper that works with a variety of backend databases through a plugin
API. Benchmark sizes are given in table 4. We manually added annotations to these benchmarks to
provide a baseline for comparison with our inference result.

5.1.2 Methodology. For the Java benchmarks, we utilized the manually annotated version provided
by Kellogg et al. [2021]. Our inference process does not rely on the presence of manual annotations.
Therefore, we removed annotations that were used by the verifier and conducted inference on the
unannotated versions of the benchmarks. Subsequently, we calculated the number of manually-
written annotations that were successfully identified through the inference process.

For the C# benchmarks, we performed inference on the unannotated versions of the benchmark.
Subsequently, we calculated the number of manually-written annotations that were successfully
recovered through the inference process.

5.1.3 Results. Table 2 shows the percentage of manually-written annotations that were discovered
by our inference algorithm, broken down by each type of annotation. On average, it recovered
85.5% of manual annotations, with 73.7% recovered on average for open-source Java projects, 92.6%
on average for open-source C# projects, and 100% for proprietary C# microservices. We hypothesize
that our technique is more effective on the microservices because those programs were written
under a stricter coding discipline, with more careful review and standards, to prevent leaks in
production services.

Note that there were 54 hand-written @CreatesMustCallFor annotations that are excluded from
table 2, as we found inference to be more effective when inference of @CreatesMustCallFor was
disabled, as discussed in section 3.4.2. If included, the average percentage of recovered annotations
is reduced to 77% from 85.5%; 100% of annotations are still inferred in the proprietary C# services.

Here we present some examples from the Java benchmarks where our inference failed to infer a
handwritten annotation. Figure 4 shows a simplified example from Zookeeper where inference
missed @MustCall("shutdown") on the Learner class. Three methods of the Learner class satisfy the
constraints defined in section 3.2 for being a disposal method for a class. Without information
on how Learner instances are used, it is difficult to determine which method is the true disposal
method. In this case, inference added @MustCall("closeSockSync") to the class instead of the
desired @MustCall("shutdown"). We believe that a better design for this class would have made the
closeSockSync and closeSocket methods private, in which case inference would have added the
correct annotation.

Figure 5 gives another example where our inference fails to infer manually-written annotations.
The BlockChecksumComputer class from Hadoop contains two private resource fields. However, its
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@MustCall("shutdown") // hand-written

@MustCall("closeSockSync") // inferred

public class Learner {

protected @Owning Socket sock;

...

@Calls(value="this.sock", methods="close")

void closeSockSync() {

try {

if (sock != null) {

sock.close();

sock = null;

}

...

} catch (IOException e) {

...

}

}

@Calls(value="this.sock", methods="close")

void closeSocket() {

if (sock != null) {

if (...) {

if (closeSocketAsync) {

...

} else {

closeSockSync();

}

}

}

}

@Calls(value="this.sock", methods="close")

public void shutdown() {

...

closeSocket();

...

}

}

Fig. 4. Simplified example from Zookeeper that shows (1) the complexity of inferring the correct @MustCall
annotation, (2) the benefits of our optimistic analysis to infer correct annotations that captures programmers’
intention.

@MustCall("compute") // not inferred

abstract static class BlockChecksumComputer {

// @Owning annotations that were

// not inferred by our analysis

private final @Owning

LengthInputStream metadataIn;

private final @Owning

DataInputStream checksumIn;

...

@NotOwning

LengthInputStream getMetadataIn() {

return metadataIn;

}

@NotOwning

DataInputStream getChecksumIn() {

return checksumIn;

}

@Calls(

value={"this.checksumIn", "this.metadataIn"},

methods={"close"}) // not inferred

abstract void compute() throws IOException;

}

class ReplicatedBlockChecksumComputer

extends BlockChecksumComputer {

...

@Calls(

value={"this.checksumIn", "this.metadataIn"},

methods={"close"}) // not inferred

void compute() throws IOException {

try {

...

} finally {

IOUtils.closeStream(getChecksumIn());

IOUtils.closeStream(getMetadataIn());

}

}

}

Fig. 5. Simplified example from Hadoop to illustrate missed annotations and an anti-pa�ern.

disposal method is defined as abstract, and delegates the responsibility of closing these resources to
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Table 3. Inferred resource management specifications and causes for checker warnings. A false positive
is correct code that the verifier cannot prove safe, even a�er annotations are added; the table categorizes
this separately from checker warnings that can be eliminated by adding an annotation. The sum of all
percentages in each row adds to 100%. “@CMCF” indicates the percentage of warnings reported due to
missing @CreatesMustCallFor annotations for non-final/non-readonly fields. “@MCE” (MustCall Empty)
represents the percentage of warnings reported due to missing @MustCall() annotations on class declarations
or type uses that do not retain a resource.

#warnings
(no annos)

#warnings
(inferred

true
posi-

false
posi-

incorrect
annota-

missing
annotations

annos) tives tives tions @CMCF @MCE Other

Service 1 251 240 12% 43% 0% 8% 32% 5%
Service 2 45 34 29% 36% 0% 3% 23% 9%
Service 3 20 12 50% 50% 0% 0% 0% 0%

Lucene.Net 670 592 30% 42% 2% 3% 20% 3%
EF Core 88 154 22% 60% 0% 8% 5% 5%

zookeeper 138 170 19% 49% 5% 13.5% 6% 7.5%
hadoop-hdfs 26 95 18% 56% 7% 9.5% 9.5% 0%

Hbase 828 844 19% 44% 2% 7% 9% 19%

the sub-classes that do not have direct access to the variables. This design choice can be problematic
not only for the modular verifiers and inference but also for developers, as it can introduce leaks if
programmers do not release the resources properly. Our inference does not detect patterns where
the resources for @Owning fields are only released in subclasses, so it misses the the @Calls annotation
on compute, the @Owning annotations on the fields, and the @MustCall("compute") annotation on the
class.

5.2 Impact on Verifier Warnings

For RQ2 and RQ3, we ran the verifier on two versions of each benchmark, first with no annotations,
and second with the annotations inferred by our algorithm. Then, for the checker warnings reported
after inferring annotations, we categorized them by whether they were caused by incorrect inferred
annotations, missed annotations, resource leaks (true positive bugs), or false positive warnings
from the checker. A true positive is a real resource leak, while a false positive is correct code that
the verifier cannot prove safe, even after annotations are added. As there were too many warnings
to triage all of them, we randomly chose at least 50 warnings from each benchmark (or all warnings
if the total number of warnings is less than 50) to categorize. Table 3 shows the results.

Number of Warnings. Per table 3, inference sometimes increases the number of warnings reported
by the verifier, compared to an unannotated program. For resource leaks, this result is expected,
since our inference discovers new @MustCall obligations that the verifier does not check if the code
is unannotated. Consider the simple example in fig. 6, where instance field con contains a Java
Connection. For unannotated code (left), the checker reports a single warning that this object is
being written into a non-@Owning field. With inferred annotations (right), con’s inferred @Owning

annotation leads to inferring a @MustCall obligation for the ConnectionWrapper class. If in multiple
places, client code uses ConnectionWrapper objects without calling its disposal method, multiple
warnings are then reported, an increase over the unannotated program. But, the warnings after
inference are of a higher quality, since they better reflect the intended resource management
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public class ConnectionWrapper {

private final Connection con;

public ConnectionWrapper() {

// warning: assign to non-@Owning field

this.con = new Connection(...);

}

public void close() {

this.con.close();

}

}

...

// no warnings here

ConnectionWrapper cw = new ConnectionWrapper();

ConnectionWrapper cw2 = new ConnectionWrapper();

...

... no calls to close ...

@MustCall("close")

public class ConnectionWrapper {

private final @Owning Connection con;

public ConnectionWrapper() {

// no warnings here

this.con = new Connection(...);

}

@Calls(value="this.con", methods="close")

public void close() {

this.con.close();

}

}

...

// two warnings: disposal method not called

ConnectionWrapper cw = new ConnectionWrapper();

ConnectionWrapper cw2 = new ConnectionWrapper();

...

... no calls to close ...

Fig. 6. Location of verifier warnings before (le�) and a�er (right) inference.

@Calls(value = {"this.storage", "this.committedTxnId", "this.curSegment"}, methods = {"close"})

public void close() throws IOException {

storage.close();

// committedTxnId remains open if storage.close() throws an exception

IOUtils.closeStream(committedTxnId);

IOUtils.closeStream(curSegment);

}

Fig. 7. Simplified example from Hadoop that shows the benefit of optimistic inference.

specification of the program. For this reason, we focus our evaluation on assessing the quality of
warnings reported after inference.

Impact of Optimistic Inference. During manual triage, we found multiple cases where optimistic
inference provided better results than a technique that only infers verifiable annotations. Consider
the shutdownmethod in fig. 4, which serves as the disposal method of the class and calls closeSocket.
There are some paths in closeSocket in which the sock object is either null or already closed, and
hence close is not called. However, our algorithm still optimistically annotates the closeSocket

method with the @Calls("this.sock", "close") annotation, matching the code’s intention to guar-
antee that the Socket is closed. This annotation is subsequently used by the checker to verify the
@Calls("this.sock", "close") annotation on the shutdown method.

Another example is shown in fig. 7, where committedTxnId and curSegment point to resource
objects that remain open on the possible exceptional exit caused by the storage.close() call.
However, our inference algorithm is able to infer the @Calls({"this.storage", "this.curSegment",

"this.committedTxnId"}, {"close"}) annotation. This annotation leads to an error report within
the close() method, the location that actually requires a fix.

True and False Positives. As shown in table 3, the verifier reports an average of 28% and 19% (out
of total warnings) true positives in C# and Java benchmarks respectively after inference runs.
This true positive rate is very close to the average 26% precision reported for the Resource Leak
Checker [Kellogg et al. 2021], where precision is the ratio of true positive warnings to all tool
warnings. However, that work reported precision after laborious work to manually annotate the
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programs. The fact that we achieve a similar precision rate shows that our inference is highly
effective. Also, Kellogg et al. [2021] reports statistics only about library types, due to the voluminous
number of errors reported and the difficulties of manual annotation. Our statistics cover (a random
sample of) all errors: both library and user-defined types. While investigating the random sample,
we discovered 6 true positive leaks of user-defined resources in Java projects, which had been
ingored in the previous work. We also discovered 10 more true positives for user-defined types in
C# benchmarks that were not reported by RLC# with manual annotations.
The Resource Leak Checker and RLC# report a significant number of false positives on our

benchmarks, 46% and 48% of the total warnings for C# and Java benchmarks respectively. These
tools have a high false positive rate because they are sound and do not use heuristics to filter
warnings. Still, previous work showed that the false-positive rate from the RLC was comparable to
that of heuristic (unsound) checkers [Kellogg et al. 2021]. The two major reasons we observed for
false positives were (a) conservative handling of collection types such as lists and dictionaries (i.e.,
poor handling of generics), and (b) a lack of path sensitivity in computing must-alias information,
resulting in over-approximation.

5.3 Redundant/Incorrect and Missing Annotations

Table 3 shows that our technique infers very few incorrect annotations. Figure 4 gave an example of
an incorrect annotation being inferred (the @MustCall("closeSockSync") annotation on the class).
Overall, the low rate of incorrect inferred annotations shows that our optimistic technique usually
infers annotations matching the intended specification.

Table 3 shows that an average of 25% and 27% of the verifier warnings are generated because of
missing annotations across C# and Java benchmarks respectively.

In C#, nearly 16% of warnings are generated because of a missing @MustCall("") annotation. We
found that in C#, classes often implement the System.IDisposable interface, even though they do not
manage a resource that needs to be disposed. In these cases, the Disposemethod is used to reset the
state of the instance variable and not to dispose any resources. Since we annotate the IDisposable

type as @MustCall("Dispose"), by default this leads to false warnings when objects of these classes
do not call Dispose. This issue can be addressed by annotating such classes as @MustCall(""), but
our inference technique cannot yet infer this annotation; we leave this enhancement as future
work.

For Java benchmarks, nearly 10% of warnings are generated due to re-assignment of non-final
@Owning fields. As discussed in section 3.4.2, such cases are typically code smells. They could be
addressed by adding a @CreatesMustCallFor annotation, but we found that exhaustive inference of
these annotations was not effective. Our tool’s current approach, which leads to verifier warnings
any time a non-final @Owning field is overwritten, encourages a cleaner programming style for
resources.

5.4 Run-time Performance

Table 4 gives performance results for inference and checking. For C#, we ran the inference algorithm
and measured the run time as an average of 3 trials on a machine with an Intel Xeon(R) W-2145
CPU running at 3.7 GHz and 64 GB of RAM. For Java, we ran the inference algorithm and the
Resource Leak Checker on a machine with a 12th Gen Intel Core i-7-12700 Processor, which has 20
cores, and 32 GB of RAM.
As noted in section 4.1, our Java implementation suffers from some inefficiencies, which are

reflected in the numbers. The CodeQL-based inference implementation for C# is quite performant,
always running in under 12 minutes for benchmarks with hundreds of thousands of lines of code.
We believe with a more optimized architecture we could build an equally-performant inference
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Table 4. Time to inferring resource management specifications. “kLoC” is non-comment, non-blank lines of
code.

Inference Verification time
kLoC time no annos inferred annos manually written annos

Service 1 450 2m 37s 2m 18s 3m 38s 3m 54s
Service 2 163 4m 48s 3m 31s 6m 40s 6m 44s
Service 3 147 4m 47s 3m 0s 5m 1s 5m 9s

Lucene.Net 412 11m 17s 55m 56s 58m 48s 57m 48s
EF Core 233 10m 53s 76m 27s 95m 36s 77m 48s

zookeeper 45 6m 16s 0m 33s 0m 38s 0m 28s
hadoop-hdfs 152 55m 23s 5m 48s 4m 37s 3m 22s

hbase 221 25m 48s 2m 52s 7m 59s 6m 14s

implementation for Java. Note that for C#, inference actually runs faster than running the RLC#
checker. This difference is due to the RLC# verifier needing to verify properties on all paths through
a method, while optimistic inference often only checks for the existence of an operation on some
path. In certain cases, verification time was higher with the inferred annotations than with manual
annotations; this occurred because inference discovered user-defined types that managed resources
(recall that such types were not inspected during manual annotation), and the verifier was then
obligated to check usages of these types for leaks.

5.5 Threats to Validity

For external validity, the primary threat for our evaluation is our choice of benchmarks. For Java,
we chose benchmarks from previous work [Kellogg et al. 2021]. For C#, we strove to choose
representative benchmarks. However, our inference may perform differently on other types of
benchmarks or coding patterns.
Our results may also be impacted by implementation bugs, threatening internal validity. We

have a suite of regression tests designed to detect such bugs, and we have also done extensive
manual inspection of the output of the inference implementations on our benchmarks.

6 RELATED WORK

Static Resource Leak Detection. Several static analyses have been designed to detect resource
leaks in unannotated code. Tracker [Torlak and Chandra 2010] and Grapple [Zuo et al. 2019] both
employ inter-procedural dataflow analysis to detect resource leaks for Java. InferSharp [InferSharp
developers 2023], built on Facebook Infer [Calcagno et al. 2015], also leverages inter-procedural
analysis to detect resource leaks for C# code. Other tools use more heuristic approaches and
intra-procedural analysis to detect leaks, e.g., analyses in Eclipse [Eclipse developers 2023] and
PMD [PMD developers 2023].
Kellogg et al. [2021] directly compared the Resource Leak Checker to the Grapple [Zuo et al.

2019] and Eclipse [Eclipse developers 2023] tools. Compared to Grapple, the Resource Leak Checker
had many fewer false negatives and ran more quickly. The Eclipse checker ran more quickly than
the Resource Leak Checker, but suffered from false negatives. The key disadvantage of the Resource
Leak Checker was that unlike the other two tools, the benchmarks had to be manually annotated
before it could be used. The inference technique presented in this paper significantly decreases
this need for manual annotation, making use of the Resource Leak Checker much easier and more
compelling.
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Inference. Type inference is a well-studied technique; for general background see Pierce [Pierce
2002]. Most type inference techniques either infer a set of types for a program that allow it to pass
the type checker, or fail with an error message. Our scenario is quite different, as our inference
must produce a useful partial solution for programs that cannot pass the type checker (due to bugs
or due to code patterns that cannot be verified). Some recent techniques leverage constraints and
optimization for type inference, e.g., approaches to migrate existing programs to use a gradual
type system [Campora et al. 2018; Migeed and Palsberg 2020; Phipps-Costin et al. 2021]. These
techniques can output a partial typing when type inference cannot fully succeed. However, the
annotations required by the Resource Leak Checker are not typical type qualifiers, but instead
capture ownership and aliasing protocols that reveal which code is responsible for disposing of a
resource. The nature of these annotations necessitates a custom algorithm.

Vogels et al. [2011] presents an inference technique for separation logic. This approach is similar
to ours in that their inference is implemented separately from their verifier, thus the inference
cannot introduce unsoundness. However, there are significant differences in the inference technique:
e.g., their work guesses many annotations and uses the verifier to see which are valid (like the
Houdini technique [Flanagan and Leino 2001]), whereas our technique uses program analysis to
discover likely specifications. Also, the properties being checked and the scale of programs being
analyzed are notably different.

Hackett et al. [2006] presents a modular checker for buffer overflows that includes an inference
approach similar in spirit to ours. The annotations for buffer overflow checking require a customized
inference algorithm, as in our case for resource leaks. Their algorithm is also formulated using
Datalog rules. And, like our technique, for practicality their algorithm is optimistic and may infer
annotations that cannot be verified. We believe that this optimistic approach for inference is
more general than buffer overflows and resource leak specifications, and it may be useful in other
domains.
Recent work has applied machine learning to type inference [Hellendoorn et al. 2018; Peng

et al. 2022; Pradel et al. 2020]. These approaches again focus on inference of traditional types for
variables, and hence cannot be directly applied to inferring the kinds of annotations required by
the Resource Leak Checker. Further, applying ML techniques to our inference problem could be
challenging due to a lack of training data. Still, ML techniques could be complementary to our
approach and help to infer better annotations in cases where our algorithm is incomplete or to
tune its heuristics.

7 CONCLUSIONS

We have presented a novel technique for inference of resource management specifications, which
enables broader usage of specify-and-verify tools for modular verification that no resources are
leaked. Our technique leverages a custom algorithm for handling inter-related specifications of
ownership, aliasing, and resource obligations. Our technique employs optimistic inference to more
often capture the intended specification for code, even when the code cannot be verified. Our
experimental evaluation showed that our technique to be very effective: it inferred most of the
annotations developers wrote by hand, and the final true positive rate of the checker run after
fully-automatic inference nearly matched the rate achieved after manual annotation.

DATA AVAILABILITY

Our inference implementation for Java will be included in a future release of the Checker Framework.
Our inference tool for C# is publicly available [Gharat et al. 2023]. We have made an artifact available
containing the code for both tools and scripts to run them on our open-source benchmarks [Shadab
et al. 2023].
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